Docking Mode of 4,5-Diarylpyrroles into Cyclooxygenase-1 and Cyclooxygenase-2

Cyclooxygenase-1과 Cyclooxygenase-2에 대한 4,5-Diarylpyrroles의 Docking Mode

  • Published : 1999.12.01

Abstract

Dockings of 4,5-diarylpyrroles into cyclooxygenase-1 and cyclooxygenase-2 were carried out by GOLD program. The sulfonyl groups bonded to 5-phenyl ring of 4,5-diarylpyrroles are directed to Arg513 of COX-2 and Tyr385 of COX-2 docking modes of pyrroles are different from COX-1. Tyr385 and Arg120 of COX-1 and COX-2 have been recognized as important residues. Val523 of COX-2 may be also important. A new COX-2 selective inhibitors could be designed from the docking study.

Keywords

References

  1. Athritis Rheum. v.32 The mechanism of action of nonsteroidal antiinflammatory drugs Abramson, S. R.;Weissmann, G.
  2. Am. J. Physiol. v.268 Prostanoid biosynthesis and mechanism of action Smith, W. L.
  3. J. Pharamcol. Exp. Ther. v.271 Differential inhibition of human prostaglandin endoperoxide H synthases-1 and 2 by nonsteroidal anti-inflammatory drugs Laneuvillee H. R.;Breuer D. K.;DeWitt, D. L.;Hla T.;Funk C. D.;Smith W. L.
  4. J. Pharmacol. Exp. Ther. v.254 Antiimflammatory and Safety Profile of PuP697, a Novel Orally Prostaglandin Synthesis Inhibitor Gans, K. R.;Galbraith, W.;Roman R. J.;Haber, S. B.;Kerr, J. S.;Schmidt, W. K.;Smith, C.;Hewes, W. E.;Ackerman, N. R.
  5. J. Biol. Chem. v.268 Differential inhibition of prostaglandin endo peroxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal antiinflammatory drugs Meade, E. A.;Smith, W. L.;DeWitt, D. L.
  6. Proc. Natl. Acad. Sci. U.S.A. v.90 Selectivity of nonsteroidal anti-inflammatory drugs as inhibitors of cocstitutive and inducible cyclooxygenase Mitchell, J. A.;Akarasereenont, P.;Thiemermann, C.;Flower, R. J.;Vane, J. R.
  7. Proc. Natl. Acad. Sci. U.S.A. v.91 Selective Inhibition of Inducible Cyclooxygenase 2 In vivo is An tiinflammatory and Nonulcerogenic Masferrer, J. L.;Zweifel, B. S.;Manning, P. T.;Hauser, S. D.;Leahy, K. M.;Smith, W. G.;Isakson, P. C.;Siebert, K.
  8. Mol. Pharmacol. v.45 Overexpression of human prostaglandin G/H synthase-1 and -2 by recombinant vaccine: inhibition by nonsteroidal antiinflammatory drugs and bio synthesis of 15-hydroxyeicosatetraenoic acid O'Neill, G. P.;Mancini, J. A.;Kargman, S.;Yergey, J.;Kwan, M. Y.;Falgueyret, J. P.;Abramvitz, M.;Kennedy, B. P.;Ouellet, M.;Cromlish, W.;Culp, S.;Evans, J. F.;Ford-Hutchinson, A. W.;Vickers, P. J.
  9. J. Med. Chem. v.38 Antiinflammatory 4, 5-Diarylpyrroles. 2. Activity as a Function of Cyclooxygenase-2 Inhibition Wilkerson W. W.;Copeland R. A.;Covington M.;Trzaskos J. M.
  10. Science v.280 Aspirin-like Molecules that Covalently Inactivate Cyclooxygenase-2 Kalgutkar A.S.;Crews B. C.;Rowlinson S. W.Garner C.;Seibert K.;Marnett L. J.
  11. Current Opinion in chemical Biology v.2 Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents Marnett L. J.;Kalgutkar A. S.
  12. Nat. Struct. Biol. v.2 The Structure basis of sapirin activity inferredred from the crystal structure of inactivated prostaglandin in H₂sythase Loll, P. J.;Picot, D.;Garavito, R. M.
  13. Nature v.367 The X-ray crystal structure of the membrane protein prostsglandin H2 synthase-2 Nature
  14. Nature v.384 Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents Kurumbail, R. G.(et al.)
  15. Nature v.385 Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents Kurumbail, R. G.(et al.)
  16. J. Computer-Aided Molecular Design v.10 Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 Morris, G. M.;Goodsell, D. S.;Huly, R.;Olson, A. J.
  17. J. Mol. Recognitio v.9 Docking of Flexible Lig-ands: Applications of AutoDock Goodsell, D. S.;Morris, G. M.;Olson, A. J.
  18. PRoteins: Str. Func. and Genet. v.8 Automated Doucking of Substrates to Proteins by Simulated Annealing Goodsell, D. S.;Olson, A. J.
  19. Proteins: Str. Func.and Genet. v.27 Automated Docking of Monosaccharide Substrates and Analogues and Melthyl alpha-Acarviosinide in the Glucoamylase Active Site Couthino, P. M.;Dowd, M. K.;Reilly, P. J.
  20. Nature Medicine v.2 Bovine beta-lactoglobulin modified by 3-hydroxyphthalic anhydride blocks the CD4 cell receptor for HIV Neurath, A. R.;Jiang, S.;Strick, K. L.;Li, Y.-Y.;Debnath, A. K.
  21. Molecular Immunology v.3 Heteroligation of a mouse monoclonal IgE antibody (La2) with small molecules, analysed by computer-aided automated docking Sotriffer, C. A.;Liedl, K. R.;Winger, R. H.;Gamper, A. M.;Kroemer, R.T.;Linthicum, D. S.;Rode, B.-M.;Varga, J. M.
  22. Protein Science v.4 Modeling substrate binding in Thermus thermophilus isopropylmalate dehydrogenase Zhang, T.;Koshland, D. E.
  23. Proteins: Str. Func. and Genet. v.20 Predicting molecular interactions and inducible complementarity: fragment docking of Fab-peptide complexes Friedman, A. R.;Roberts, V. A.;Tainer, J. A.
  24. Proteins: Str. Func. and Genet. v.17 Automated Docking in Crystallography: Analysis of the Substrates of Aconitase Goodsell, D. S.;Lauble, H.;Stout, C. D.;Olson, A. J.
  25. Nature v.358 Prediction of a receptor protein complex using a binary docking method Stoddard, B. L.;Koshland, D. E.
  26. Dockvision 1.0.2 Hart N. N.;Ness S. R.
  27. J. Mol. Biol. v.267 Development and validation of a Genetic Algorithm for Flexible Docking Johnes, G.;Willett, P.;Glen, R. C.;Leach, A. R. L.;Taylor R.
  28. J. Mol. Biol. v.245 Molecular Recognition of Receptor Sites Using a Genetic Algorithm with a Description of Desolvation Johnes, G.;Willett, P.;Glen, R. C.
  29. Journal of Molecular Graphics v.14 VMD-Visual molecular dynamics William F. Humphrey;Andrew Dalke;Klaus Schulten
  30. International Journal of Super-computing Applicatio ns and High Performance Computing v.10 NAMD-A parallel, object-oriented molecular dynamics program Mark Nelson;William Humphrey;Attila Gursoy;Andrew Dalke;Laxmikant Kal;Robert D. Skeel;Kalus Schulte n.
  31. Computational Mechanics v.95 no.1 MDScope-a visual computing environment for structural biology Mark Nelson;William Humphrey;Attila Gursoy;Andrew Dalke;Laxmikant Kal;Robert Skeel;Klaus Schulten;Richard Kufrin;S. N. Atluri(ed.);G. Yagawa(ed.);T. A. Cr use(ed.)
  32. IEEE Computational Science & Engineering no.Winter Modeling biomolecul es: Larger scales, longer durations John A. Board,Jr.;Laxmikant V.Kal;Klaus Schulten;Robert D. Skeel;Tamar Schlick
  33. South Hanley Road St. Louis MO 3144-2913 Sybyl.Tripos,Inc.
  34. Proc. Natl. Acad. Sci. U.S.A. v.72 Roth, G.J.;Stanford N.;Majerus P.W.
  35. Nature New Biol. v.231 Vane J. R.
  36. Eur. J. Biochem. v.171 Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction Karthein R.;Dietz R.;Nastainczyk W.;Ruf H. H.
  37. J. Biol. Chem. v.1267 Spectral analysis of the protein-derived tyrosyl radicals from prostaglandin H synthase DeGray J. A.;Lassmann G.;Curtis J. F.;Kennedy T. A.;Marnett L. J.;Eling T.E.;Mason R. P.
  38. J. Biol. Chem. v.1273 Structural characterization of arachidonyl radicals formed by prostaglandin H synthase-2 and prostaglandin H synthase-1 reconstituted with mangano protoporphyrin IX Tsai A.L.;Palmer G.;Xiao G.;Swinney D. C.;Kulmacz R. J.
  39. J. Biol. Chem. v.1273 Nitric oxide trapping of tyrosyl radicals generated during prostaglandin of the radical derivatives of tyrosine 385 Goodwin D.C.;Gunther M. H.;Hsi L. H.;Crews B. C.;Eling T. E.;Mason R. P.;Marnett L. J.
  40. Proc. Natl. Acad. Sci. U.S.A. v.72 Structural requirments for time-dependent inhibition of prostaglandin biosynthesis by inflammatory drugs Rome L. H.;Lands W. E. M.
  41. Proc. Natl. Acad. Sci. U.S.A. v.91 Mechanism of selective inhibition of isoform of prostaglandin G/H synthase Copeland R. A.;Williams J. M.;Giannaras J.;Nurnberg S.;Covington M.;Pinto D.;Pick S.;Trzaskos J. M.
  42. Natl. Struct. Biol. v.3 Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2 Luong C.;Miller A.;Barnett J.;Chow J.;Ramasha C.;Browner M. F.