Conversion of Gycosylphosphatidylinositol (GPI)-Anchored Alkaline Phosphatase by GPI-PLD

  • Published : 1999.06.01

Abstract

Enzymatic conversion of brain glycosylphosphatidylinositol-linked alkaline phosphatase (GPI-AP), amphiphilic, was examined. When GPI-AP was incubated with glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD), a negligible conversion of GPI-AP to hydrophilic form was observed. The inclusion of monoacylglycerols enhanced the enzymatic conversion, although the action of monoacylglycerols differed greatly according to the size of acyl group; the enzymatic conversion was enhanced considerably in the presence of monoacylglycerols possessing acyl group of longer chain length ($C_{10-}C_{18}$), which monoacylglycerols with acyl moiety of shorter length ($C_{4-}C_{8}$) did fail to augment the enzymatic conversion. Noteworthy, monooleoylglycerol was much more effective than the other monoacylglycerols in promoting the enzymatic conversion, indicating a beneficial role of the unsaturation in acyl chain. Meanwhile, ionic amphiphiles such as monohexadecyllysophosphatidylcholoine and palmitoyl-carnitine decreased the enzymatic conversion of GPI-AP in a concentration-dependent manner, with monohexadecyllysophosphatidylcholine and palmitoyl-carnitine deceased the enzymatic conversion of GPI-AP in a concentration-dependent manner, with monohexadecyllysophosphatidylcholoine being more inhibitory than palmitoylcarnitine. Separately when GPI-AP was exposed to various oxidants prior to the incubation with GPI-PLD, a remarkable decrease of the enzymatic conversion was observed with hypochlorite and peroynitrite generators, but not $H_{2}O_{2}$. In further study, hypochlorite was found to inactivate GPI-PLD at low concentrations ($3~100{\mu}M$). From these results, it is suggested that the enzymatic conversion of GPI-AP by GPI-PLD may be regulated in vivo system.

Keywords