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AN EXISTENCE OF THE FULLY DISCRETE
SOLUTION FOR THE NAVIER STOKES EQUATION

Hyun YouNG LEE AND MIN JUNG AHN

ABSTRACT. In this paper, we construct a fully discrete solution of the
incompressible Navier Stokes equations using implicit Runge Kutta
method. We prove the existence of the fully discrete solution.

1. Introduction

In this paper we consider the following Navier Stokes equations:

u —vAu+(u-Viu+Vp=f in Qx(0,T)

(1.1) u=0 on 9 x [0,T]
' divu =0 in Qx1[0,7T]
u(z,0) = u®(z) in Q

where u is a RN-valued function, Q ¢ RV, N =2,3, and 0 < T < 0.
We seek a RY-valued velocity function u = (uy,...,uy) and a real-
valued pressure function p, defined on Q2 x [0, '] when © has a sufficiently
smooth boundary 02.

We assume that u0 is a given RN-valued function defined on Q with
u® = 0 on 89 and divu® = 0:in . In (1.1), v > 0 is kinematic viscosity
constant.

The results of existence, uniqueness and regularity of a pair of so-
lutions (u,p) are proved. We refer the reader to the book by Temam
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In this paper we apply the implicit Runge—Kutta method to construct
the fully discrete solution. We prove the existence of the Galerkin fully
discrete solution.

In [1], Baker proved an unique existence of the semidiscrete solution
of the Navier Stokes equation. In [5], Crouzeix and Raviart used the con-
forming and nonconforming finite element method to solve the stationary
Stokes equation. In [2,3,6,7], several results on the unique existence and
convergence of the fully discrete solution of Navier Stokes equation are
obtained.

2. Preliminaries and Notations

We introduce the appropriate spaces of functions. For an integer s > 0
and a real number 1 < p < 0o, we define H® as the usual Sobolev space,
with the associated norm

o= S [1Dogp2
ialss/

As usual, we let H! be the space of those functions in H! which vanish
on AN in the sense of trace. We let H®* = (H*)Y = H® x --. x H® and

o o N
H! = (H')N. We equip H® with the inner product (u,v)s = ¥ (us, vi)s,
i=1
1
generating the product norm || - ||; = (+,-)2. We construct a finite di-
(o]

mensional subspace S}, of H! consisting of ordered N-tuples of piecewise
polynomials of degree < r — 1 defined on a quasi uniform partition of Q
and satisfying the approximation property:

igsf (lu = x|l + Rllu — xll1) < CR®||ulls, VueH NH!, 1<s<r,
X€ESE

and
Ixll < CR Hixll, Vxe€Sh

where C is independent of A.
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We let Pi: be the family of finite dimensional subspaces of H!, which
consist of piecewise polynomials of degree r <1if r =2 and <r —2if
r > 2. We assume that P;: satisfies the approximation properties:

‘f(— hlp— 1) <chlpls, Vpe H®, 1<s<r-—1,
¢1€nP£ lp — ¢| + hlp ¢|1)¢c Ip| p € <s<r

and A
6l1 < ch~|l, V¢ € P

Now we define the bilinear form

Ou; 0v; 1
a(u,v) = Z/axjam] z, Vu,vel.

It is well known that there exists a constant C, = C,(£2) such that

a(u,v) < fuliloly, Vu,v € HY,
a(u,w) > Collull?, VYueH.

We also consider the following trilinear form
a'Ui 01
b (u,v,w) = Z uip—w;dz, Vu,v,w € H.
In this paper, we shall use the following trilinear form
1
b(ua v, 'LU) = E(bl (ua v, w) b (’LL, w, ’U))
[e]
It is well known that, for u € H! with divu = 0 in €,

b(u, v, w) = by (u,v,w) = —by(u,w,v), Vov,weH".

We also remark here that it is well known that there exists a constant

Cy = Cp(92) such that

1b(u, v,w)| < Cyllullilvlwly, Vu,v,w € H'.
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Since, for a fixed u € H?!, a(u,v) is a bounded linear functional on
(Si, 1l - ), by Riesz-representation theorem, for any fixed u € H' there
exists an unique a(u) € (S}, || - ||) such that

(a(u),v) = a(u,v), Yv €S},
and also the following inequality holds,

la(@)l = sup |(a(u),v)] = sup |a(u,v)|

loll=1 lvll=1
< ulallvl < Ch7Hlull1floll = CA™Hlull1.

Since, for a fixed u € Wi o, b(u,u,v) is a bounded linear functional
on (S}, - |I), by Riesz-representation theorem, there exists an unique
b(u) € (S}, | - ||) such that

(b(u),v) = b(u,u,v), VveES,
and also the following inequality holds,

[o(u)|| = Sup, b(u, u, v)|

veES
< € sup (lulllluflyeollvll + ffulllluloollvll)
v|l=
< sup C(fufllullieollvl) < Ch™ | 1,00-
v|l=

And also define f3; € (S, [|-|I) by (f,v) = (fij,v). Then [ £5]l < Ifis]l-
Welet S§; = {v €S, :(v,Vq) =0, Vqe P(Q)/R}.

3. Implicit Runge-Kutta Method

For the temporal approximation of the solution to (1.1), the implicit
Runge-Kutta (IRK) methods are now introduced. For an integer ¢ > 1,
g-stage IRK method is characterized by a set of constants arranged in
the following tableau form

air ... Qiq 1

Aq1 ... Qqq Tq bT
b ... b
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In this paper, we assume that there exists for each ¢, a diagonal ¢ x ¢
matrix D with positive diagonal elements such that DAD™! is positive
definite on RY.

Given the initial value problem

y=f(ty), 0<t<T

(3.1) y(0) = 1°.

IRK methods can be applied to generate approximations {y"}J_, to
{y(t™)}2_o as follows. Let

q
(3.2) v =T kY bif(t,y™)
=1
where ™ = t" + T;k, k = T/J and the intermediate stages y™ are given
by the coupled system of equations
. q
(3.3) v =yt kY am YY), i=1,2,...,q
m=1
For more details about the application of Runge-Kutta method, refer to

[4]. We apply IRK method to (1.1) to get

q
(U™,v) + kY ai{va(U™,v) + b(U™, U™, v)}

(3.4) j=1q
= (U™ 0) + kY aij(faj,v), WES], 1<i<q,
j=1
q
(3.5) (U™ ) = (U™ 0) +k Zbi[—va(U"i,v) —b(U™, U™, v)
' i=1

+ (fni, v)], Yv € §’,;
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4. Existence of the Fully Discrete Solution

THEOREM 4.1 (Brouwer’s fixed point theorem). Let H be a
finite dimensional Hilbert space with inner product (-,-)y and norm
|- l|. Let g : H— H be continuous function. If there exists a > 0 such
that (9(z),2z)g > 0 for all z with ||z||g = a, then there exists z* € H
such that ||z*||g < a such that g(z*) = 0.

THEOREM 4.2. The fully discrete solution of (3.4) exists. And triv-
ially (3.5) has a unique solution.

PROOF. From (3.4) we have

q
(U™ 0) + kY ai;{va(U™,v) + (U™, U™, v)}

(4.1) =
= (U™ ) + kY ai;(fnjrv), W €S,
j=1
Set

Fi(v) =(U™0) + kY aij{va(U™,v) + b(U™,U™,v) — (fnj,v)}

=1

—(U™v), Ve gz

For fixed U = {U™}_, € (S;)? = H, F; is bounded linear functional on
(Sp,ll - ) for i =1,2,...,q. By the Riesz representation theorem, there
exists unique u; € S}, such that

q
(Uni?v) + k‘Z a’ij{Va(Unj)v) + b(Unja Unjav) - (fnj)'U)}
Jj=1

— (U™, v) = (u4,v).

(4.2)

Define F : (S})? — (S})7 such that F(U) = (Fi(Uni)r<icq = (u1,
U2, ..., uq)'. We need to show that there exists U € (S})? such that
F(U)=0. '
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If we rewrite (4.2), we have
F(U) =U + kA{va(U) +b{U) — f*} - U,

n ((S;)% ]l - ) where a(U) = (a(U™),a(U"?),--- ,a(U™))}, b(U) =
(b(Unl)’b(Un2)7 e 1b(Unq))t7 f* = (f;;la f;;2> tee f'r):q)t and U = (Una
un, ..., U™

To prove the continuity of F, it is sufficient to prove the continuity of
a(U) and b(U). Now we first prove the continuity of a(U).

la(U) = a(V)lln

=1

= (Z lla(Us — Vi)||2)
i=1

< Ch7?|U -V u

(Z la(Us) — a<w>||2)

which implies the continuity of a(U).
Continuity of b(U) can be proved as follows.

IIb( ) = (V)&
Z”b(Uz)_b )II?

'F”ﬂn )

.Q
I
MR

(b(U:) —b(V3),b(Us) — b(V3))

b”qﬁ

[(6(U4), b(Us)) — (b(U3),b(V3)) — (b(V4), b(Uy)) + (b(V2), b(V3))]

.
Il
-

+ I

[b(Ui, Ui, b(Ul)) - b(Uu Ui’ b(Vz)) - b(V‘H Via b(Ul))

o,

il
c-r-l

+b(Vi, Vi, b(V3))]
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= zq:[b(Ui = Vi, Ui, b(Us)) — b(Us = V3, Us, b(V5)) — b(V;, Vi — Us, b(U5))

2

=1
q
1

<y

i=

[CollU: = VillllUill 1,00 16(Us) 11 + CollUs = Villl|Uil 1,00 1B(Vi) 11
+ CollVilllVi = Uilly, 016U 11 + CollVill Vi — Uill1,e010(Vi) 1]

q
<N GIU: - ViR O DUy G DUy 12

=1

+1Us = Vil O+ DUy S+ D v
+ |[Villh= O V; = U||h= G| U; |12
+ Vi~ OBV, — Ul D) ;|2

q9
=Y Coh U + UVI? + VAT + IV IB}IV: = Ul

i=1

If U - Vlu < 1, then ||U; — V;|| < 1, ie., ||Vil| <1+ ||Ui|| = M;. For
any given € > 0, choose § such that

2h(4+N)
ndg €
6<m1n{ ’C{,4qM3}

where M = max M;.
1<i<gq

If |[U - Vl]u <, then

q
1B(U) = b(V)I% < Y Coh~UMan®|v; — Uy
i=1
< Ch~ Wt Ngqnr3s
<é,

which implies the continuity of b(U) on H.
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Now we obtain the following equalities,
(FU), V) =(U + kA{va(U) + b(U) ~ f*} = Un, U)m,
(D*A7YF(U),U)n =(D?*A7*U + kD*{va(U) + b(U) — f*}
—-D2A7Y0,, U)g,
(D*A~U,U)y =(DA™'U,DU)y = (DA™*D~'DU, DU)y
= (CDU, DU )y,
where C = DA™'D~! = (DAD~!)~! is positive definite on R?. And

also we have (D2A~U,U)y > C'||DU||% > C1||U|| for some positive
constant Cj.

U) +b(U)},Un

> kd? {VZ a(Us),U;) + Z(b(U ), Us) }
= kd2 {I/Z[a U:,,,U + b(UzaUHU )]}

d? VCOZ |U:||2} > kCa iU ||
i=1

for some positive constant Co which depends on the matrix A, v and €,

where d = min d;.
1<i<q

|(kD?f* + D*A70™, Ul < Ca(kl f*lal|Ulm + 1T sl U llm),
for some positive constant Cj.
(D?A7'F(U), U)ul
> Ci||U| + kCollU g — Ca(kll f* Izl Ulle + 10 |l U llm)
= |Ullu{llUlla(C1 + Cak) — Ca(k||f* |l + U™ ) }

for some positive constant C3. Choose U € (S})? = H such that

2C3{k|lf*|ls + 11U |lm}
U = - .
“ ”H Cy + Cok “
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If either f* % 0 or U™ # 0, then o > 0, which implies that there exists
U* € H such that D?A~'F(U*) = 0 and ||[U*]]| < a by fixed point
theorem 4.1. We proved that there exists U* € H satisfying F(U*) = 0,
which implies the existence of {U™};=1 2... 4 satisfying (4.1).

If f*=0and U™ = 0, then (4.1) has a trivial solution 0 € H.
This ends the proof of the existence of {Up;} which satisfies (4.1). O

We leave the stability and convergence of the fully discrete solution

introduced in this paper for the future work.

(2]

(3]
(4]
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