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THE NON-EXISTENCE OF HOPF BIFURCATION
IN A DOUBLE-LAYERED BOUNDARY PROBLEM
SATISFYING THE DIRICHLET BOUNDARY CONDITION

YOONMEE HaMm

ABSTRACT. A free boundary problem is derived from a singular limit
system of a reaction diffusion equation whose reaction terms are bistable
type. In this paper, we shall consider a free boundary problem with
two layers satisfying the zero flux boundary condition and shall show
that the Hopf bifurcation can not occur as a parameter varies.

1. Introduction

A reaction diffusion system satisfying bistable condition is reduced to a
free boundary problem as a layer parameter tends to zero. For the multiple
free boundary problem, the well posedness of solutions was shown in (2],
however, an occurrence of a Hopf bifurcation in this cases has not been
shown yet. For a double free boundary problem satisfying the Neumann
boundary condition, the authors in [3] proved the Hopf bifurcation. We
want to examine a Hopf bifurcation for double-layered problem satisfying
the Dirichlet boundary condition. We will see quite different behaviors
from this problem. In this paper, we shall show that there does not exist
a Hopf bifurcation for the double-layered problem satisfying the Dirichlet
boundary condition and thus it suggests that the Hopf bifurcation does
not occur in this multiple-layered boundary problem.
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We shall consider a free boundary problem with two layers s and m as
an abstract evolution equation

(F) { %(v,s,m) + Z(v,s, m) = F(v,s,m)
(v, 8,m)(0) = (vo(-), 50, M) .

The operator A is a 3 x 3 matrix that the (1,1)-entry is a differential
operator A = —D(—i‘% + ¢ and all the other entries are zero. The operator

A is defined by
A:D(A) Ciense X — X, X := Ly((0,1)) xR xR
D(A) := D(A) x R x R, D(A) := {v € H*2(0,1) : v(0) = 0 =v(1)}.

The nonlinear operator F' is given by

Fi(v(-,t), s(t), m(t)) H(- - :(t)) — H(- — m(t))
F(v,s,m) = | Fp(v(-,t),s(t),m@) |:= ~C(v(s(t),1)
Fi(u(,2) 3(8), m(®) —~C(u(m(®),1)

where the velocity of the free boundary C(-), is a continuously differen-
tiable function defined on I := (—a,1 ~ a) and given by (see in [1], [8])

C(r) = 2(r+a)—1 .

V(A —r—a)(r+a)

The well-posedness of (F) was shown in [2] and [10], and we shall adopt
a few things in order to examine a Hopf bifurcation. The authors obtained

a regularized problem of (F) using Green’s function for A and a following
transformation

u(t)(w) = 'U(:II, t) - g((L‘, s(t),m(t)) ’
where a real function g is defined in [0, 1]® and is given by

o(z,5m) = [ " Oe,y)dy = ANH(- - 5) - H(- - m))(z).

Moreover, we define yand : [0,1]2 — R
v(s,m) :=g(s,s,m) and n(s,m):=g(m,s,m).

Then the problem (F) is transformed to the following problem
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(R) { dit(u’ s,m) + Av(u,s,m) = %f(u,s,m)
(2, 8,m)(0) = (u(0), 5(0), m(0)) = (uo, 30,m0) -
where the nonlinear term f is a mapping from W to L2(0, 1) x R x R with
W= {(u,s,m) € CY[0,1]) x (0,1) x (0,1) : u(s) +(s,m) €I |
w(m) +1(s,m) € I} Copen CH([0, 1) x RX R
and is given by
C(u(s) +7(s,m)) G(z, s) + C(u(m) + n{s,m)) G(z,m)
fu,s,m) = C(u(s) +(s,m))
| —~C(u(m) + (s, m))

In [2], the authors proved the well-posedness of (R) using domains of
fractional powers & € [0,1] of A and the imbedding theorem [4]. They
obtained that f : WNX* — X is a continuously differentiable function
where X* := X* x R, X := D(A%) c C*([0,1]). In the next section, we
shall examine a Hopf bifurcation of (R) in this space.

2. Non-existence of a Hopf bifurcation

We shall investigate the behaviors of eigenvalues for the problem (R).
In order to do this, we need the linearized eigenvalue problem for (R)
which is linearized at the stationary solutions.

The stationary problem for (R) is given by

Aut = L1C(u(s*) +v(s*,m*))- G(,5")
+1 C(u*(m*) + n(s*,m*)) - G(-,m")

= L1C(u*(s*) +(s*,m"))

= —1C(u(m*)+n(s*,m*))
for (u*, s*,m*) € D(A)NW. For nonzero 7, the above system is equivalent
to the pair of equations
(2.1) v =0, C(y(s*,m*))=0and C(n(s*,m*)) =0.
We thus obtain
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PROPOSITION 2.1. If 0 < 1 — 2a < 2 sinh?($) sinh(g), then (R)

c¢?sinhe
has a unique stationary solution (0, s*, m*) for all T # 0 with m* = 1 —s*,

s* €(0,1/2)\ {1/4}. The linearization of f at (0,s*,m*) is
Df(0, s*, m*)(, 8, )
= (a(s") + (5", m")5 + Ym(s", m)m* ) - (Gls",m"),1,0)
+ (ﬁ(m*) + ns(s*, m*)8 + N (s, m*)m*) . (G(s*,m*),O, ——1).

The pair (0, s*,m*) corresponds to a unique steady state (v*, s*, m*) of (F)
for T # 0 with v*(2) = g(z, s*,m").

PROOF. We rewrite v(s, m) and (s, m) as
c(s —m)
—
Note that C(r) = 0 if and only if y(s,m) = 1/2—a and n(s,m)’=1/2—a
which implies sinh(c(s +m — 1)) = 0. Thus we have C(r) = 0 if and only
if s + m = 1. Therefore we only need to show the existence of s* which
satisfies y(s*,1 — s*) = 1/2 — a for s* € (0,1/2). Now we define

I(s) = 2(s,1-3)

_ 2 ¢ . c(l—2s)
= m31nh§-31nh——T——

1 . .
v(s,m) = n(s,m) + oy sinh(c(s +m — 1)) - sinh

- sinh cs.

. o .,y _ sinh(1/2 — 2s)
Then I'(s) is satisfied that I'(0) = 0 =T'(1/2) and I"(s) = ¢ cosh(c/2)
Therefore, I'(s) — (1 — 2a) = 0 has solutions in (0,1/2) \ {1/4}. It follows
that m* = 1—s* with m* € (1/2,1)\ {3/4}. The formula for Df(0, s*, m*)
follows from Lemma 2.5 in [2] and the relation C'(1/2 — a) = 4. Using
Theorem 2.7 in [2], we obtain the corresponding steady state (v*, s*, m*)
for (F). O

Since C'(1/2 — a) = 4, we define a new parameter u = 4/7. We now
introduce the definition of a Hopf bifurcation.

DEFINITION 2.2. Under the assumptions of Proposition 2.1, define (for
3/4 < a < 1) the operator B € L(X?, X) as

B = i—Df(O, s*,m").



Nonexistence Hopf bifurcation in double-layered problem 445

We then define (0, s*,m*, u*) to be a Hopf point for (R) if there exists an
€ > 0 and a C'-curve

(—€0+ 1", 1" + €0) = (Mp), #(n)) € C x Xo

(Xc denotes the complexification of the real space X) of eigendata for
~A+ 1B such that
() (=A+uB)(@(n)) = Mu)d(n), (—A+ puB)(B(n)) = Mu) (w);
(if) AM(p*) = iB with 8 > 0;
(iii) Re (A) # 0 for all A € o(—A + p*B) \ {%iB};
(iv) Re N(u*) # O (transversality).

The linearized eigenvalue problem of (R) is given by

-—;f(u, s,m) + uB(u,s,m) = Mu, s,m)
which is equivalent to
(2.2)
(A+XNu = p-(r(s',m*)s + ym(s*, m*)m + u(s*)) - G(, s*)
+u - (ns(s*, m*)s + Nm(s*, m*)m + u(m*)) - G(-,m*)
As = p- (15(s',m*)s + (s, m*)m + u(s*))
A= —p- (15(s*,m*)s + N (*, m*)m + u(m*)) .

Here we note that

1l m?) = =G(s",57) + [ Gals',y) dy = s m)
st
and
Tm(s*,m*) = G(s",m") = —n,(s*, m").
Furthermore, 7,(s*,m*) < 0 for 1/4 < s < 1/2 and 7,(s*,m*) > 0 for
m‘

0<s<1/4. Also / G.(s*,y)dy = (v*)(s*) > 0for 0 < s < 1/2.

We now show the non-existence of pure imaginary eigenvalues and the
Hopf critical point in the following theorem.

THEOREM 2.3. There is no a purely imaginary eigenvalue A = i3, § >
0, of (2.2) and a critical point u* in order for (0, s*, m*, u*) to be a Hopf
point.
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PROOF. Let v(z,t) = u(z,t) + g(z, s(t), m(t)) to (2.2). Then we have
the following linearized eigenvalue problem of (F) which is represented by

(2.3) (A+ANv=—bgp:5+0p -m,
(2.4) As=p- ((07)() 5 +v(s")
and

(2.5) Am=—p- ((v*)’(m*)m+v(m*))

where 4, ia the Dirac delta function.

The solution of (2.3) is given by v(z) = —Gi(z,s*)s + Gi(z,m")m
where G, is Green’s function of A + X satisfying the Dirichlet boundary
condition. Multiply (2.4) by s and (2.5) by m, and multiply (2.4) by m
and (2.5) by s and then add together. Then we have

(26) As+m)= p,((v*)'(s*) — Ga(s', 8*) + Ga(s", m*)) (s +m)?.

We let ReA =0 and Im A = 3 > 0 in (2.6), and obtain the real part

(2.7) (0')(s") — Re (Gig(s", 5") = Gug(s",m*)) = 0.
The imaginary part is
(2.8) B+ uIm (Giﬁ(s*, 5*) — Gig(s*,m*)) =0.

We have to check that the equation (2.7) has a solution for 8. So define
T(B) = (v")(") - Re (Gupls", 8*) — Cials,m"))
Then T(B) is a strictly increasing continuous function of 3?. Furthermore,
lim T(6) = (v)(s")

= ! (cosh cs*(coshe(l — s*) — 1)) >0

¢sinh e
and

TO) = (v*)(s*) —ReG(s",s") + ReG(s",m)

1

sinh?(c (s* — 1/2)) .

csinhe
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In order to have a solution-of 3, T'(0) must be negative, but T(0) is
always nonnegative. Thus, a pair of pure imaginary complex conjugate
eigenvalues cannot exist. Hence a critical point of y does not exist. 0O

So we have shown that there does not exist a Hopf bifurcation in a
double-layered problem of (R) satisfying the Dirichlet boundary condi-
tion, but there does exist this phenomena in (R) satisfying the Neumann
boundary condition.
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