A NOTE ON FELLER'S THEOREM

Dug Hun Hong

ABSTRACT. In this note we have generalization of Feller's theorem to real separable Banach spaces, from which we obtain easily Chow-Robbins "fair" games problem in the Banach spaces.

1. Introduction

Let $(B, \| \|)$ be a real separable Banach space. The law of large numbers for Banach-valued random variables have been studied by many authors. In this paper, we apply Chung's SLLN in a Banach space [2] to obtain

Feller's *SLLN* [4] in a Banach space. From this result, Chow-Robbins "fair" games problem can be easily obtained.

2. Main results

Throughout this section, let $\{X_n, n \geq 1\}$ be a sequence of independent identically distributed B-valued random variables, and put $S_n = \sum_{i=1}^n X_i$. Let ϕ be a positive, even and continuous function on R such that as |x| increases $\frac{\phi(x)}{x} \uparrow$ and $\frac{\phi(x)}{x^2} \downarrow$.

The following lemma plays an essential role in our main theorem.

LEMMA 1. (Choi and Sung [2]) Let $\{X_n, n \geq 1\}$ be a sequence of independent B-valued random variables and $\{a_n, n \geq 1\}$ constants such that $0 < a_n \uparrow \infty$. Assume $\sum_{n=1}^{\infty} E\phi(\|X_n\|)/\phi(a_n) < \infty$. Then the following

Received February 26, 1998. Revised February 28, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 60F15.

Key words and phrases: random vectors, strong law of large numbers, fair games.

are equivalent:

(i)
$$E||S_n||/a_n\to 0,$$

(ii)
$$S_n/a_n \to 0$$
 a.s.,

(iii)
$$S_n/a_n \to 0$$
 in probability.

THEOREM 2. Let $E||X_1|| = \infty$ and let $\{b_n, n \ge 1\}$ be a sequence of positive numbers such that $\{b_n/n\}$ is nondecreasing. Then

(i)
$$\sum_{n=1}^{\infty} P(\|X_1\| > b_n) = \infty \text{ implies } \limsup_{n \to \infty} \|S_n\|/b_n = \infty \text{ a.s. and }$$

(ii)
$$\sum_{n=1}^{\infty} P(\|X_1\| > b_n) < \infty \text{ implies } \limsup_{n \to \infty} \|S_n\|/b_n = 0 \text{ a.s.}$$

PROOF. Let $F(x) = P(\|X_1\| \le x)$, and assume that $\sum_{n=1}^{\infty} P(\|X_1\| > b_n) = \infty$. By a well-known lemma on series of tail probabilities ([8], p. 131), we have that $\sum_{n=1}^{\infty} P(\|X_1\| > \lambda b_n) = \infty$ for all $\lambda > 0$. By Borel-Cantelli lemma, we have

$$P(\limsup_{n\to\infty} ||X_n||/b_n \ge \lambda) \ge P(||X_n||/b_n > \lambda \text{ i.o }) = 1,$$

and since λ is arbitrary,

(2.1)
$$\limsup_{n\to\infty} \frac{\|X_n\|}{b_n} = \infty \text{ a.s.}$$

Thus we note via the triangle inequality that for $n \geq 2$

$$\frac{\|X_n\|}{b_n} = \frac{\|S_n - S_{n-1}\|}{b_n} \le \frac{\|S_n\|}{b_n} + \frac{\|S_{n-1}\|}{b_n}$$

which, in view of (2.1), proves (i).

Assume that $\sum_{n=1}^{\infty}P(\|X_1\|>b_n)<\infty$. Let $X_k'=X_kI(\|X_k\|\le b_k), X_k''=X_kI(\|X_k\|>b_k), S_k'=\sum_{i=1}^kX_i'$ and $S_k''=\sum_{i=1}^kX_i''$. Then by Borel-Cantelli lemma, $S_n''/b_n\to 0$ a.s. Now we complete the proof by showing that $S_n'/b_n\to 0$ a.s. But it suffices to show that $\sum_{n=1}^{\infty}E\|X_n'\|^2/b_n^2<\infty$ and $E\|S_n'\|/b_n\to 0$ by Lemma 1 with $\phi(x)=x^2$. If we set $b_0=0$, then

we obtain

$$\sum_{n=1}^{\infty} \frac{E||X'_n||^2}{b_n^2} = \sum_{n=1}^{\infty} \frac{1}{b_n^2} \int_{|x| \le b_n} x^2 dF(x)$$

$$= \sum_{n=1}^{\infty} \frac{1}{b_n^2} \sum_{k=1}^n \int_{b_{k-1} \le |x| < b_k} x^2 dF(x)$$

$$\le \sum_{k=1}^{\infty} \int_{b_{k-1} \le |x| < b_k} dF(x) b_k^2 \sum_{n=k}^{\infty} \frac{1}{b_n^2}.$$

Since the sequence $\{b_n/n, n \ge 1\}$ is nondecreasing,

$$\sum_{n=k}^{\infty} \frac{1}{b_n^2} \le \frac{k^2}{b_k^2} \sum_{n=k}^{\infty} \frac{1}{n^2} \le \frac{2k}{b_k^2},$$

we have

$$\sum_{n=1}^{\infty} E \|X'_n\|^2 / b_n^2 \leq \sum_{k=1}^{\infty} 2k P(b_{k-1} \leq \|X_1\| < b_k)$$

$$\leq 2 \sum_{k=0}^{\infty} P(\|X_1\| > b_k) < \infty.$$

We now estimate the quantity $\sum_{k=1}^{n} E||X'_{k}||/b_{n}$, as $n \to \infty$. Clearly for any N < n, it is bounded by

(2.2)
$$\frac{n}{b_n} \left(b_N + \int_{b_N < |x| < b_n} |x| dF(x) \right).$$

Since $E||X_1|| = \infty$ and $\sum_{n=1}^{\infty} P(||X_1|| > b_n) < \infty$, b_n/n cannot be bounded. Hence for fixed N the term $(n/b_n)b_N$ in (2.2) tends to 0 as $n \to \infty$ and the second term of (2.2) is bounded by

$$\frac{n}{b_n} \sum_{j=N+1}^n b_j \int_{b_{j-1} \le |x| < b_j} dF(x) \le \sum_{j=N+1}^n j \int_{b_{j-1} \le |x| < b_j} dF(x),$$

since $nb_j/b_n \leq j$ for $j \leq n$. If we replace the n in the right hand side above by ∞ , it tends to 0 as $N \to \infty$ since

$$\sum_{k=1}^{\infty} k \int_{b_{k-1} \le ||x|| < b_k} dF(x) \le \sum_{n=1}^{\infty} P(||X_1|| \ge b_n) < \infty.$$

This completes the proof of Theorem 2.

Using Theorem 2 and following the line of proof of Theorem 2 [3], we obtain the following Chow-Robbins "fair" games problem in general Banach spaces.

THEOREM 3. If $E\|X_1\|=\infty$, then for any sequence of $\{b_n, n\geq 1\}$ either $\liminf_{n\to\infty}\|\frac{S_n}{b_n}\|=0$ a.s. or $\limsup_{n\to\infty}\|\frac{S_n}{b_n}\|=\infty$ a.s., and consequently, $P(\lim_{n\to\infty}\|\frac{S_n}{b_n}\|=1)=0$.

References

- [1] A. de Acosta, Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probab. 9 (1981) 157-161.
- [2] B. D. Choi and S. H. Sung, On Chung's law of large numbers in general Banach spaces, Bull. Austral. Math. Soc. 37 (1988) 93-100.
- [3] Y. S. Chow and H. Robbins, On sums of independent random variables with infinite moments and "fair" games, Proc. Nat. Acad. Sci. U.S.A. 47 (1961) 330-335.
- [4] W. Feller, A limit theorem for random variables with infinite moment, Amer. J. Math. 68 (1946) 257-262.
- [5] J. Hoffmann-Jorgensen and G. Piser, The law of large numbers and the central limit theorem in Banach spaces, Ann. Probab. 4 (1976) 587-599.
- [6] A. Korzeniowski, On Marcinkiewicz SLLN in Banach spaces, Ann. Probab. 12 (1984) 279-280.
- [7] J. Kuelbs and J. Zinn, Some stability results for vector valued random variables, Ann. Probab. 7 (1979) 75-84.
- [8] W. F. Stout, Almost sure convergence, Academic Press, New York, 1974.

School of Mechanical and Automotive Engineering Catholic University of Taegu-Hyosung Kyungbuk 712 - 702, Korea