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PERFORMANCE ANALYSIS OF A
STATISTICAL MULTIPLEXER WITH
THREE-STATE BURSTY SOURCES

BoNG DAE CHOI AND YONG WOOK JUNG

ABSTRACT. We consider a statistical multiplexer model with finite
buffer capacity and a finite number of independent identical 3-state
bursty voice sources. The burstiness of the sources is modeled by de-
scribing both two different active periods {at the rate of one packet per
slot) and the passive periods during which no packets are generated.

Assuming a mixture of two geometric distributions for active period
and a geometric distribution for passive period, we derive the recur-
sive algorithm for the probability mass function of the buffer contents
(in packets). We also obtain loss probability and the distribution of
packet delay. Numerical results show that the system performance de-
teriorates considerably as the variance of the active period increases.
Also, we see that the loss probability of 2-state Markov models is less
than that of 3-state Markov models.

1. Introduction

We consider a statistical multiplexer model with finite buffer capacity
M and a finite number N of independent identical three-state voice sources
(see Fig. 1). This statistical multiplexer system is modeled as a discrete-
time single server queueing system where input traffic is the superposition
of N independent and identical three-state Markov models. In the slotted
system, time is divided into fixed length intervals, called slot, such a way
that one slot suffices to transmit exactly one packet from the multiplexer.
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The service discipline is assumed to be FCFS. Each source generates pack-
ets according to a 3-state Markov chain, where in any slot Markov chain
is in one of three different states. There are two types of active periods,
say A; and A,, and one type of passive period. The time durations spent
in the active period A; and in the passive period are assumed to have
geometrically distributed with parameter o; and g, respectively (i = 1, 2).
The one packet per slot is generated in the active periods and no packets
are generated in the passive period. At the end of each passive period, the
next active period is of type A; with probability p and of type A, with
probability 1 — p, and at the end of each active period, the next period is
passive period.

Extensive studies have been done on the statistical multiplexer with
bursty sources, but most of studies have been limited to models with
2-state Markov models where each source alternates between one active
period and one passive period [1, 2, 3, 5, 6, 7, 8, 9, 11, 12]. Experimental
results [4, 10] showed that the probability mass function of a talkspurt
duration is a mixture of two geometric distributions rather than one geo-
metric distribution. This is why we assume that the duration of active
period is a mixture of two geometric distribution functions in this paper.

Recently, Steyaert et al. [15] and Sohraby[12] have studied the statisti-
cal multiplexer model with infinite buffer capacity and a finite number of
independent 3-state Markov models. Steyaert et al. [15] derived the mean
buffer contents and mean packet delay. Sohraby [12] derived formula for
a geometric tail approximation of the buffer contents. As far as a practi-
cal use, our assumption for finite capacity of buffer is more realistic than
infinite capacity.

Our main purpose is to find the distribution of the buffer contents, loss
probability and the distribution of the packet delay in the multiplexer.

The rest of this paper is organized as follows. In section 2, we analyze
the arrival model. In section 3, we derive the distribution of the buffer
contents. In section 4, we derive the loss probability. In section 5, we
obtain the distribution of packet delay. Finally numerical examples are
given in section 6.
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FiGURE 1. Statistical multiplexer

2. Arrival model

At any slot each source is in one of the active period of type A;, the
active period of type A, and passive period. Since the time durations
spent in the active period of type A;(i = 1,2) and in the passive period
are assumed to have geometrically distributed with parameter o;(i = 1, 2)
and B, respectively, we have, for n > 1, '

P{active period of type A4, is n slots} = (1 — a;)a} ™,
P{active period of type A; is n slots} = (1 — az)ag™",
P{passive period is n slots} = (1 — 8)8""..

At the end of each passive period, the next state is the active period of type
A, with probability p and the active period of type A, with probability
1—p, and at the end of each active period, the next period is passive. The
state transition probability diagram is given in Fig. 2.

Note that the 3-state Markov chain for voice source is determined by
four parameters o4, o, B and p.

Among the N sources, we denote by a;(k) the random variable de-
scribing the number of active sources of type A; at the k-th slot. Then
the pair (a;(k),aq(k)) forms a homogeneous Markov chain. Let us de-
fine a(j1, jo}i1,%2) as the one-step transition probability that there are j
sources of active period (4;) and j, sources of active period (Az) at the
k-th slot, if there were 7, sources of active period (A4;) and i, sources of ac-
tive periods (Ay) at the previous slot. With the definition in the previous
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FIGURE 2. State transition probability diagram of a source

section, it is clear that

(11,51)~ (¢2,52)~ .
a(j1, Jolir, 32) = Z Z G (=g
k=(ivtirtji-N)* HirHetjiti-N-k)t
X N—i1—42 le—k [(1 - :B)p]jl_kig C[al2 (1 - a2)i7“
) X Neig-igrit Cipt[(1 = B) (L —p) P g iridatd

where (-,-)” = min(-,-), (-)* = max(0,-) and ,C, = —,(—f—q—);

Now, let us denote by 7(j1, j2) the steady-state probability that there
are j, sources of active period(A4;) and j, sources of active period(Az).
Then 7(j1, j2) can be obtained from the following global balance equations.

N N-ip

(2) 7o) = Y D w(ir,i2)a(js, falin, i2),

19=0 i1=0

for 0<j1+7532<N, 57120 and 5 >0.
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Together with the normalization condition 2 Gr2). 7r(]1, J2) =1, it is
<ji+iz<

easy to check that the solution of (2) is given by

3) (i) ik

2071 _ N~-j1~j
j1!j2!(N—Jl-]2)'aJ]0J 2 (1= o =),

where
P i-p
o = 1-ag Oy = 1-a2
= d-p _L 1=p __.'
l-a; + 1—-a2 + 1-ay + 1-az +

Note that £~ + —:—fz- and —-——ﬁ- are the mean lengths of an active period

and a passwe penod respectively. Thus the quantity o; and o, are equal
to the probability that any source is in active period of type A; and active
period of type A, at an arbitrary slot, respectively.

3. Distribution of the buffer contents

In order to characterize the state of the multiplexer described in the
section 1, a 3-dimensional state description is required. Let us denote by
v(k) the random variable indicating the buffer contents just after the k-th
slot(i.e., at the beginning of the (k + 1)-th slot). Then (a1(k), a2(k), v(k))
forms a Markov chain. We have the system equation as following.

(4) v(k) = ((v(k — 1) = 1)t + ay (k) + az(k), M)~.
Defining the one-step transition probabilities of the Markov chain {(a;(k),
az(k),v(k))|k=1,2,---} as
p(j17j27 n'ihi?: m) £ P{al(k) = j17a2(k) = j2a ’U(k) = nl
al(k - 1) = il,a2(k - 1) = ’ig,'l)(k - 1) = m}
By applying the conditional probability, we have

(5) p(41, J2, nlir, 72, m)
= P{v(k) = nlai(k) = j1, a2(k) = j2,a1(k — 1) = iy, a2(k — 1) = iy,
v(k — 1) = m}P{ay(k) = j1,a2(k) = jalas(k — 1) = 4,
az(k — 1) = ig,v(k — 1) = m}
= P{u(k) = nlai(k) = j1,a2(k) = j2,a1(k — 1) =41, a2(k — 1) = 72
v(k — 1) = m}a(j1, jalir, i2)-
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Using (4), we can rewrite (5) as

p(jl:jZ)nlilyi%m)
= a(j11j2|i17i2)6[((m - 1)+ +.71 +j27M)_ - n]a

where 6(:) is the kronecker-delta function.
Define the steady state distribution of (a,(k), az(k), v(k)) as follows

T(j1, J2,m) 2 lim Play(k) = ji1, aa(k) = ja, v(k) = n).
k—o0
Then 7(jy, jo, n) satisfies the following the balance equations

6)  7Gndznn)= D (i, Ja,nlis, ia, m)m(in, iz, m).
(i14ig,m)

0<iy +ig<(m,N)~
0<m<M

Together with the normalization condition, this is a set of linear equations
for {7 (j1,j2,n)}. In the following, we will develop a recursive algorithm to
solve this set of equations, starting from the initial probability = (0, 0, 0).

Combination of (6) and (7) yields

(7) W(jl7j27n)
= a(jl’ji’loa 0)5[(.71 + j2, M)— - n]ﬂ-(o, 0’ O)

+ Y a(du, alin, 12)[(m — 1+ j1 + jo, M)~ — ] x (i1, ip, m),
(i1,i2,m)

0<iy +iz<(m,N)~
1<m<M

for0<n<M, 0<j+j<(nN).

From this set of balance equations, we will derive a recursive algorithm
for the determination of all 7(j1, j2,n). Specifically, our goal is to obtain
7(j1, jo, ) recursively from 7(iy, ia,m) for m < n, 0 <4, + iy < (m, N)~.
First, we consider the case of n = 1. A set of three linear equations for the
three unknown quantities 7(0,0,1), #(1,0,1) and 7 (0, 1, 1) is obtained by
setting (j1,j2,n) being equal to (1,0,1),(0,1,1) and (0,0,1) in equation
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(8) as follows:
7(1,0,1)

]

a(1,0[0,0)7(0, 0, 0) + (1, 0|0, 0)7(0,0, 1)
+a(1,0{1,0)7(1,0,1) + a(1, 0}0,1)7(0, 1,1),

7(0,1,1) = a(0,10,0)x(0,0,0) + a(0, 1{0,0)7(0,0,1)
+a(0,1{1,0)7(1,0,1) + a(0, 1]0,1)7(0,1,1),

7(0,0,0) = a(0,0}0,0)7(0,0,0) +la(0,0|0, 0)7(0,0,1)
+a(0,0J1,0)7(1,0,1) + a(0, 0{0,1)7(0,1,1).
Solving these equations yields
(0,0,1) = —;—W(O,O,O)

1-a(0,000,0) a(0,02,0)  a(0,0}0,1)
—a(1,0/0,0) a(1,0]1,0)—1 a(1,0{0,1)
~a(0,110,0)  a(0,11,0)  a(0,1/0,1) -1

(9a) X

?

(1,0,1) = %W(O,O, 0)

a(0,0[0,0) 1-a(1,0/0,0) a(0,0/0,1)
a(1,0(0,0) —a(1,00,0)  a(1,0/0,1)
a(0,1(0,0) —a(0,10,0) a(0,1/0,1) — 1

(9b) X

bl

7(0,1,1) = %W(0,0, 0)

a(0,00,0)  a(0,0]1,0) 1 - a(1,0/0,0)
(9¢) x | a(1,00,0) a(1,0{1,0)—1 —a(1,00,0) |,
a(0,10,0) a(0,1]1,0)  —a(0,1]0,0)

where

4(0,00,0)  a(0,0]1,0)  a(0,0/0,1)
a(1,0]0,0) (1,01,0)-1  a(1,0/0,1)
a(0,1/0,0)  a(0,1]1,0) a(0,1]0,1) =1

Next, we consider the case: 2<n < M - 1.

A=
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Case 1. 2<j;+js <(n,N)~
From equation (8), we have

W(jl)j% n) = a(jlaj2|0) 0)6[(.71 +j2> M)_ - n]W(O’ 07 0)

+ E a1, Jolir, 12)0(m — 1 + g1 + jo — n)m (i1, 2, ™)
(i1,i2,m)
0<ig+ig<(m,N)~
1<m<M+1-(j1+i2)

(10) + > ay, daliv, i2)8(M — n)(iy, iz, m)
(i1,i2,m)

0<iy +ig<(m,N)=
MY¥1-j]—ja<m<M

= a‘(j17j2|0a 0)6[(J1 + j2; M)_ - n]7r(0, 07 0)

+ Z a(jr, jali, i2)m (i1, %2, + 1 — j1 — Ja2).
(i1,42)
05"1+i25(n-1+12—1'1—j2,N)"
Equation (10) shows that 7 (71, j2, n) can be written by 7 (41,43, m), m < n — 1.
Case 2. 0<j+75 <1

By setting (ji,j2) being equal to (1,0) and (0,1) in equation (8), we
easily obtain two linear equations for 7 (0,0, n), 7(1,0,n) and 7(0,1,n)
in terms of the quantities that have already been determined with the
equation (10):

(11a) a(1,0]0,0)7(0,0, n) + (a(1,0]1,0) — 1)x(1,0,n)
+a(1,0/0,1)7(0,1,n) = —B,
(11b) a(0, 1[0, 0)7(0, 0, ) + a(0, 1|1,0)x(1,0, n)

+ (a(0,1{0,1) — 1)7(0,1,n) = —C,
where

B 2 Z a(l,OI’i],i2)7T(7:1,i27n)7

(i1442)
2<i1+ip<(n,N)~

C = Z a(il,i2|0,1)7r(i1,i2,n).

(1,i2)
2<ig+ip<(n,N)~
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Finally, the third expression for these quantities can be obtained by sub- '

stituting (0,0,n — 1) for (j1,j2,n) in equation (8), We thus obtain
a(0,0|0,0)7(0,0,n) + a(0, 0|1, 0)x (1,0, n) + a(0, 00, 1)7(0, 1, )

(11c) =7(0,0,n—-1)- D,

where

D2 Y a(0,00i, i) (ir, i, ).

. (iy,ig)
284 +Hig<(n,N)™

It can be easily verified that the solution of (11a,b,c) is given by

1 | m(0,0,n— 1)-D a(0,0]1,0) a(0,0]0,1)
(12a) 7(0,0,n) = 7 -B a(1,0]1,0) -1 a(1,0/0,1) |,
-C a(0,1}1,0) a(0,1/0,1) -1
1 a(0,0/0,0) =(0,0,n—1)—D  a(0,0[0,1)
(12b) #(1,0,n) = — | a(1,0{0,0) -B a(1,0/0,1) |,
A1 4(0,1]0,0) -C a(0,1]0,1) - 1
1 a(0,0/0,0) a(0,0[1,0) «(0,0,n—-1)-D
(12¢) =(0,1,n) = v a(1,0[0,0) a(1,0]1,0) -1 -B
a(0,1/0,0)  a(0,1|1,0) -C

From (9a,b,c), (10) and (12a,b,c), m(j1, j2,!) can be written as
(13) 7 (1, J2, 1) = a(dr, J2, )7(0,0,0), 1<I<M-1.
On the other hand,
M
(14) t(uja) = Y, m(inda k).
k=j1+j2

By substituting (0, 0) for (1, j2) in above equation (14) and using 7(0, 0, M) =
0, we obtain

M M-1
(15) (0,0) = >_7(0,0,k) = Y _ (0,0, k).

k=0 k=0
From (3),(13) and (15), we can obtain the value 7(0,0,0).

From (3), (13) and (14), we can obtain all 7(jy, j2, M) for 0-< ji +J2 <

M.
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Therefore we obtain all 7(ji, j2,n), 0 <n <M, 0< ji +j2 < (n,N)™.
The distribution of the buffer contents v at the steady state at the end of
a slot is obtained

Plv=n}= Y. w(ij»n), 0<n<M.

(J1-32)
0<j1+i2<(Nyn)~

4. Loss probability

To find loss probability, we need to calculate the probability distribution
of the buffer contents at arrival instant of tagged packet.

Let a} (i = 1, 2) denote the total number of sources with active period(A;)
in the slot during which the tagged packet is arriving to the multiplexer
buffer, and v* the buffer contents that the arriving tagged packet sees.

Then

.. * . * : 4+ 1g)m s ’i
(16) r(i1,iz) & P{a] =i1,03 =iz} = : 1.7\7(c721)+(012) 2).

Moreover, we have

(17) P{v* = kla} = 41,03 = i2}
= P{v(n) = klay(n+1) = i1,a2(n + 1) =4}
P{v(n) = k,a1(n+ 1) = i, a3(n + 1) = iz}
P{ai(n+1) =4,a:(n+ 1) =2}
1
P{ay(n+1) =141,a2(n +1) =i}
% Z P{ai(n+1) =41, az(n+1)=iz|v(n) =k, a1 (n) =31, az(n) = j2}

(J1,d2)
0<jy+ie S(k,N)~

x  P{ay(n) =4, az(n)=j2,v(n) =k}
1
= — a(iy, t2lg1, J2)7 (41, g2, k).
0<j1+iaS(kN)~
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Let P{served} be the probability that an arriving tagged packet is served.
Then we have

(o +ip M- (k-1)%)

18) P dla} = 4;,0; =19,V =k} = —
(18) {served|a] = t3,a} = ip,v } e

Hence

M
(19)  P{served} =Z E P{served|a} = 1, a3 = i3, v* = k}

k=0  (31.,42)
] 1<ij+ig<N

X P{’U’ = kla{ = z’l,a§ = ig}P{aI = il,a§ = iz}.
From (16), (17), (18) and (19), we obtain

(20) P{served}—- U1+02 Z Z Z

k=0 (i1.ig) (1.32)
1S3 +igSN <1459 <k, N)™

(7:1 + i2a M - (k - 1)+)— X a(il,i2|jl)j2)7r(jl7j2:k)"
The loss probability of an arriving packet is given by
P{loss} =1 - P{served}

=1- N(mm)Z > Y Gt M-G-1)

(i1,i2) (G1,42)
1<iy +Ha <N 0<j) +ip<(k,N)~

X a’(ila i?ljla j?)ﬂ'(jla j2’ k)

5. Distribution of the packet delay

We define the packet delay W of a tagged packet as the number of slots
between the end of the slot of arrival of this packet in the buffer and the
end of the slot during which it is transmitted.In the following, we assume
the service discipline is FCFS. We assume that the service order among
the cells arriving during the same slot in the buffer is random.

For (k—1)*+1<I<(k—1)*+ (41 + i3, M = (k= 1)")", we have
(21)

. 1
P{W =lla] = t1,a5 =12,v" = k,served} =

(i +12, M — (k= 1)*)~"
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M
1 * __ * __ 2
(22) P{W = llserved} = W E E P{al =10,0, = 12}

1<i1+i2<N k=0
x P{W = l|a} = 4, a} = iz, v* = k,served}
x P{served|a} = 1, a} = i3,v" = k}
XP{U* = kla‘{ = il,a; = 12}
From (16), (17), (18), (21) and (22), we obtain
(23) P{W =l|served}
-1

1
- N (o1 + 02) P(served) Z z

1<is+i2 <N (k—1)+=(I—(i1+iz, M—(k=1)+)")+

Z a(iy, i2l51, J2)m (41, 32, k).

0<1+j2<(k,N)~

6. Numerical examples

Let us investigate the influence of the variance of the distribution of
the active period and the influence of the parameters of a source on the
buffer behavior. In order to do so, the following burstiness factors K and
L are used [15].

1-p
K 2 (1-0)(—2
( U)(l_a1+1_a2)7

(1-0)? 1 1\ a
K(K +0-1) [p(l—p) <1_al - 1—02) +p(1_a1)2

b~
>

where ¢ = o1 + 09.

Note that K is the ratio of the mean length of an active period in our
model, to the mean length of an active period in the case that each source
is active with probability o and passive with probability 1 — . L is the
ratio of the variance of an active period in our model, to the variance
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of a geometrically distributed active period with the same mean length
S I
l—-a1 1-a

The impact of variance of active period(L) on the system performance
measures such as loss probability and mean packet delay is illustrated in
Fig. 3. Fig. 3 displays the loss probability, mean packet delay and tail
distribution of buffer contents for given ¢ = 0.1,p = 0.2,M = 5 and
K = 5 and varying L and number N of sources. It is shown that the
influence of variance of active period is far from negligible. For increasing
values of L, the system performance deteriorates considerably.

Fig. 4 illustrates the influence of K on the behavior of buffer. Fig. 4
displays the loss probability, mean packet delay and tail distribution of .
buffer contents for given 0 = 0.1,p = 0.2, M =5 and L = 7. Fig. 4 shows
that loss probability and mean packet delay are less sensitive to K than
L, but the influence of K on the performance measures is not negligible.

Note that 3-state Markov model is determined by exactly four parame-
ters oy, oo, 8 and p. Next examples show how much the four parameters
have an effect on performance of the system.

In Fig. 5, we investigate the variation of the performance measures as
the buffer capacity increases. The parameters used in Fig. 5 are given as
following:

e (a;,02,08,p) = (0.8,0.4,0.95,0.1)

In Fig. 5, we can easily find an efficient buffer capacity needed to satisfy a
given QoS. Fig. 5(a) shows that buffer capacity 16 is enough for satisfying
the loss probability less than 10~ for 3 sources, and buffer capacity 17 is
enough to satisfy the loss probability less than 1072 for 5 sources. On the
other hand, the buffer capacity must be less than 12 in order to satisfy
the mean packet delay less than 3 for 7 sources.

Note that 2-state Markov model is a special case of 3-state Markov
model with p = 0. The performance measures for 2-state Markov mod-
els and 3-state Markov models are compared in Fig. 6 and Fig. 7. The
parameters used in Fig. 6- Fig. 7 are given as followings:

e N=3

e (a1, s, 3,p) = (0.8,0.4,0.95,0.1) for 3-state Markov models

o (s, B) = (0.5,0.95) for 2-state Markov models, where a; was chosen

such a way that mean active period for both models is the same.

Fig. 6 displays a comparison of loss probabilities between 2-state Markov
models and 3-state Markov models. As an example, Fig. 6 shows that
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buffer capacity for 2-state Markov model is 10 to satisfy the loss proba-
bility less than 10~%, but buffer capacity for 3-state Markov model is 15
to satisfy the loss probability less than 10~

Fig. 7 displays a comparison of the mean packet delay between 2-state
Markov models and 3-state Markov models and shows that mean packet
delay is not significant.
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