RADICALS AND HOMOMORPHIC IMAGES OF C*-ALGEBRAS

HYUK HAN

ABSTRACT. In this paper, we prove that the range of homomorphism from a C^* -algebra A into a commutative Banach algebra B whose radical is nil contains no non-zero element of the radical of B. Using this result we show that there is no non-zero homomorphism from a C^* -algebra into a commutative radical nil Banach algebra.

1. Introduction

Let A and B be Banach algebras. A linear map $\theta:A\to B$ from A into B is said to be a homomorphism if θ is multiplicative. There are various fruitful results in continuity of homomorphisms between Banach algebras. But the existence problem of non-zero homomorphisms between Banach algebras has scarcely been studied so far.

In this paper, we study the existence problem of a non-zero homomorphism from a C^* -algebra into a Banach algebra. It is shown that the range of homomorphism from a C^* -algebra A into a commutative Banach algebra B whose radical is nil contains no non-zero element of the radical of B. Using this result we show that there is no non-zero homomorphism from a C^* -algebra into a commutative radical nil Banach algebra. Finally we give an example of a commutative radical nil Banach algebra and we prove that this algebra can not be a homomorphic image of a C^* -algebra.

2. Preliminaries

In this section, we present some definitions and theorems which will be used in section 3.

Received October 9, 1998. Revised February 5, 1999.

1991 Mathematics Subject Classification: 46H40, 46J45.

Key words and phrases: homomorphism, radical, quasi-nilpotent.

DEFINITION 1. The (Jacobson) radical of a Banach algebra A is the intersection of the maximal modular left ideals of A if such ideals exist, and is the algebra A itself if there are no maximal modular left ideals of A. The radical of A is denoted by rad(A). The Banach algebra A is said to be semi-simple if rad(A) contains only the zero element of A, and to be a radical algebra if rad(A) is A itself.

By the definition of the radical of a Banach algebras, the radical is a closed left ideal, but it is in fact a closed two-sided ideal of the algebra.

An element x of a C*-algebra is called *hermitian* if $x = x^*$, and a subalgebra is called *self-adjoint* if it is closed under involution. Every closed two-sided ideal of a C*-algebra is known to be self-adjoint.

An element x in a Banach algebra is said to be *quasi-nilpotent* if $\|x^n\|^{\frac{1}{n}}=0$. Since $\|x^n\|^{\frac{1}{n}}$ is the spectral radius of x, an element x of a Banach algebra is quasi-nilpotent if and only if the spectral radius of x is equal to zero. That is the spectrum of x contains a single element 0. In a Banach algebra every element of the radical is quasi-nilpotent. But in a noncommutative Banach algebra a quasi-nilpotent element need not be in the radical. In fact, Kaplansky proved that every noncommutative C*-algebra contains a non-zero nilpotent element and this element does not belong to the radical since every C*-algebra is semi-simple. In a commutative Banach algebra the radical coincides with the set of quasi-nilpotent elements.

The following theorem is the earliest result in automatic continuity theory. This was proved by Silov and can be found in [2]. But Silov's result does not hold when A is noncommutative [4]. Johnson proved that every epimorphism from a Banach algebra onto a semi-simple Banach algebra is continuous [7]. It is still open question whether every homomorphism from a Banach algebra into a semi-simple Banach algebra with dense range is continuous.

THEOREM 2. Every homomorphism from a Banach algebra into a commutative semi-simple Banach algebra is continuous.

The following theorem shows that the range of continuous homomorphism from a C^* -algebra A into a Banach algebra B contains no non-zero element of the radical of B. This theorem is found in [3].

THEOREM 3. Let A be a C^* -algebra and B be a Banach algebra. Then for each continuous homomorphism θ from A into B we have

$$rad(B) \cap \theta(A) = \{0\}.$$

An ideal I of a algebra A is said to be a nil ideal if for each $x \in I$, there exists a positive integer n such that $x^n = 0$, where n depends upon the element $x \in I$. An ideal I of a algebra A is said to be a nilpotent ideal if $I^n = \{0\}$ for some positive integer n. Here, I^n denotes the set of all finite sums of product of n elements taken from I. Hence a nilpotent ideal is a nil ideal. But S. Grabiner proved that every nil Banach algebra is nilpotent [2].

The next theorem gives a sufficient condition for a homomorphism of $C(\Omega)$ to be continuous. Here, $C(\Omega)$ denotes the commutative C*-algebra of continuous functions on a compact Hausdorff space Ω . The theorem is found in [1].

THEOREM 4. Let θ be a homomorphism of $C(\Omega)$ into a commutative Banach algebra B. If the radical of B is a nil ideal, then θ is continuous.

3. Homomorphic images of C*-algebras

In this section, we investigate the properties of the radical of the codomain of a homomorphism on a C*-algebra.

LEMMA 5. Let A be a Banach algebra and $A_I = A \oplus \mathbb{C}$ be the unitization of A. Then we have

$$rad(A) = rad(A_I)$$
.

PROOF. Define a map $f: A_I \to \mathbb{C}$ by $f(x, \lambda) = \lambda$. Then clearly f is a multiplicative linear functional on A_I with the kernel A. Hence A is a maximal modular left ideal of A_I . Hence $\mathrm{rad}(A_I) \subseteq A$. Therefore we have,

$$rad(A) = rad(A_I) \cap A = rad(A_I).$$

THEOREM 6. Let A be a C*-algebra and B be a commutative Banach algebra whose radical is nil. Then for each homomorphism θ from A into B we have

$$rad(B) \cap \theta(A) = \{0\}.$$

PROOF. Let $\theta:A\to B$ be a homomorphism from A into B and let b be an arbitrary element of $\operatorname{rad}(B)\cap\theta(A)$. Then there exists an element a in A with $\theta(a)=b$. Let A' be the C*-algebra generated by the hermitian element $a+a^*$. Let $\pi:B\to B/\operatorname{rad}(B)$ be the canonical quotient map. And let $\overline{\theta}=\pi\circ\theta$. Since $B/\operatorname{rad}(B)$ is a commutative semi-simple Banach algebra, $\overline{\theta}:A\to B/\operatorname{rad}(B)$ is continuous. Hence $\ker(\overline{\theta})$, the kernel of $\overline{\theta}$, is a closed two-sided ideal of A and so it is self-adjoint. Since $a\in\ker(\overline{\theta})$, $a^*\in\ker(\overline{\theta})$. That is $\theta(a^*)\in\operatorname{rad}(B)$. Therefore we have,

$$\theta(a+a^*) = b + \theta(a^*) \in rad(B).$$

Let $\theta':A'\to B$ be the restriction of θ on A'. Let A'_I, B_I be the unitization of A', B, respectively. And let $j:A'\to A'_I, k:B\to B_I$ be the inclusion maps. Let Φ be the carrier space of the commutative C*-algebra A'_I . Then the Gelfand representation $\Lambda:A'_I\to C(\Phi), \ \Lambda(x,\lambda)=(x,\lambda)^{\hat{}}\ (x\in A',\ \lambda\in\mathbb{C})$, is an isometric *-isomorphism of A'_I onto $C(\Phi)$. Define a map $\psi:C(\Phi)\to B_I$ by $\psi((x,\lambda)^{\hat{}})=(\theta'(x),\lambda)$. Then clearly ψ is a homomorphism of $C(\Phi)$ into B_I . And we have

$$\psi \circ \Lambda \circ j = k \circ \theta'.$$

By Lemma 5, $rad(B_I) = rad(B)$. Hence $rad(B_I)$ is a nil ideal. By Theorem 4, $\psi: C(\Phi) \to B_I$ is continuous. So $k \circ \theta'$ is continuous. Since k is the inclusion map, θ' is continuous. By Theorem 3, we have

$$rad(B)\cap\theta'(A')=\{0\}.$$

Since θ' is the restriction of θ on A', $b+\theta(a^*) \in rad(B) \cap \theta'(A')$. Therefore we have,

$$b+\theta(a^*)=0.$$

Similarly considering the C*-subalgebra generated by the hermitian element $i(a-a^*)$, we can show that

$$b-\theta(a^*)=0.$$

Therefore,

$$b = \frac{1}{2} \{ (b + \theta(a^*)) + (b - \theta(a^*)) \} = 0.$$

This completes the proof.

If B is a Banach algebra satisfying the descending chain condition for left (or right) ideals, then the radical of B is nilpotent. Consequently we have the following corollary from Theorem 6.

COROLLARY 7. Let A be a C*-algebra and B be a commutative Banach algebra satisfying the descending chain condition for left ideals. Then for each homomorphism θ from A into B we have

$$rad(B) \cap \theta(A) = \{0\}.$$

COROLLARY 8. Let A be a C*-algebra and B be a commutative radical nil Banach algebra. If $\theta: A \to B$ is a homomorphism from A into B then $\theta = 0$.

PROOF. Since
$$rad(B) \cap \theta(A) = \{0\}$$
 and $rad(B) = B$, $\theta = 0$.

COROLLARY 9. Let B be a commutative non semi-simple Banach algebra whose radical is nil. Then B is not a homomorphic image of a C^* -algebra.

PROOF. If there is a homomorphism from a C^* -algebra A onto B, then we have

$$rad(B) = rad(B) \cap \theta(A) = \{0\}.$$

Hence B must be semi-simple.

EXAMPLE 10. Let $L^1[0,1]$ denote the Banach space of complex valued integrable functions on [0,1]. Here, the norm is defined by

$$||f|| = \int_0^1 |f(t)|dt \quad (f \in L^1[0,1]).$$

If we define

$$(f * g)(t) = \int_0^t f(s-t)g(s)ds \quad (t \in [0,1])$$

for $f, g \in L^1[0,1]$, then $L^1[0,1]$ is a commutative Banach algebra without identity. This algebra is called the *Volterra algebra* and denoted by V. If u(t) = 1 $(t \in [0,1])$, then

$$u^{*n}(t) = \frac{t^{n-1}}{(n-1)!} \quad (n \in \mathbb{N}, \ t \in [0,1]),$$

where u^{*n} denotes the n-th convolution power of u. Hence u is a quasinilpotent element. Since the radical of V coincides with the set of all quasi-nilpotent elements in V, u belongs to the radical of V. Hence n-th convolution power of u belongs to the radical of V. That is, the functions of the form t^n ($t \in [0,1], n \in \mathbb{N}$) belong to the radical of V. Hence all (ordinary) polynomials on [0,1] belong to the radical of V. But then all (ordinary) polynomials on [0,1] are dense in V. It follows that V is a radical algebra.

For a non-zero element of f of V, let $\alpha(f) = \inf(\sup f)$, where $\sup f$ is the support of f. Set $\alpha(0) = \infty$. For 0 < a < 1, let

$$M_a = \{ f \in V : \alpha(f) \ge a \}.$$

By the Titchmarsh convolution theorem [5], M_a is a non-zero closed ideal of V, and if $f \in M_a$ then $f^{*n} \in M_{na}$ $(n \in \mathbb{N})$. Hence M_a is a commutative radical nil Banach algebra.

If θ is a homomorphism from a C*-algebra into M_a , then $\theta = 0$ by Corollary 8.

References

- [1] W. G. Bade and P. C. Curtis, Jr., Homomorphisms of commutative Banach algebras, American J. Math. 82 (1960), 589-608.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer Verlag, New York, 1973.
- [3] T. G. Cho, On homomorphisms of C*-algebras, Bull. Korean Math. Soc. 22 (1985), 89-93.
- [4] H. G. Dales, Automatic continuity: A survey, Bull. London Math. Soc. 10 (1978), 129–183.
- [5] ______, Convolution algebras on the real line, Radical Banach Algebras and Automatic Continuity, Lecture Notes in Mathematics, vol. 975, Springer Verlag, New York, 1983, pp. 180-209.

- [6] N. H. McCoy, The Theory of Rings, MacMillan Co., New York, 1964.
- [7] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Notes Series 21, Cambridge University Press, Cambridge, 1976.
- [8] M. Takesaki, Theory of Operator Algebras, Springer Verlag, New York, 1979.

Department of Mathematics Seonam University Namwon 590-711, Korea *E-mail*: hyukhan@tiger.seonam.ac.kr