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RADICALS AND HOMOMORPHIC
IMAGES OF C*-ALGEBRAS

Hyuk HAN

ABSTRACT. In this paper, we prove that the range of homomorphism
from a C*-algebra A into a commutative Banach algebra B whose
radical is nil contains no non-zero element of the radical of B. Using
this result we show that there is no non-zero homomorphism from a
C*-algebra into a commutative radical nil Banach-algebra.

1. Introduction

Let A and B be Banach algebras. A linear map § : A — B from
A into B is said to be a homomorphism if # is muitiplicative. There
are various fruitful results in continuity of homomorphisms between Ba-
nach algebras. But the existence problem of non-zero homomorphisms
between Banach algebras has scarcely been studied so far.

In this paper, we study the existence problem of a non-zero homo-
morphism from a C*-algebra into a Banach algebra. It is shown that
the range of homomorphism from a C*-algebra A into a commutative
Banach algebra B whose radical is nil contains no non-zero element of
the radical of B. Using this result we show that there is no non-zero ho-
momorphism from a C*-algebra into a commutative radical nil Banach
algebra. Finally we give an example of a commutative radical nil Banach
algebra and we prove that this algebra can not be a homomorphic image
of a C*-algebra.

2. Preliminaries

In this section, we present some definitions and theorems which will
be used in section 3.
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DEFINITION 1. The (Jacobson) radical of a Banach algebra A is the
intersection of the maximal modular left ideals of A if such ideals exist,
and is the algebra A itself if there are no maximal modular left ideals of
A. The radical of A is denoted by rad(A). The Banach algebra A is said
to be semi-simple if rad(A) contains only the zero element of A, and to
be a radical algebra if rad(A) is A itself.

By the definition of the radical of a Banach algebras, the radical is a
closed left ideal, but it is in fact a closed two-sided ideal of the algebra.

An element = of a C*-algebra is called hermitian if x = z*, and a
subalgebra is called self-adjoint if it is closed under involution. Every
closed two-sided ideal of a C*-algebra is known to be self-adjoint.

An element z in a Banach algebra is said to be quasi-nilpotent if
llz"||% = 0. Since ||z™||= is the spectral radius of , an element z of a
Banach algebra is quasi-nilpotent if and only if the spectral radius of x
is equal to zero. That is the spectrum of z contains a single element 0.
In a Banach algebra every element of the radical is quasi-nilpotent. But
in a noncommutative Banach algebra a quasi-nilpotent element need not
be in the radical. In fact, Kaplansky proved that every noncommutative
C*-algebra contains a non-zero nilpotent element and this element does
not belong to the radical since every C*-algebra is semi-simple. In a
commutative Banach algebra the radical coincides with the set of quasi-
nilpotent elements.

The following theorem is the earliest result in automatic continuity
theory. This was proved by Silov and can be found in [2]. But Silov’s
result does not hold when A is noncommutative [4]. Johnson proved that
every epimorphism from a Banach algebra onto a semi-simple Banach
algebra is continuous [7]. It is still open question whether every ho-
momorphism from a Banach algebra into a semi-simple Banach algebra
with dense range is continuous.

THEOREM 2. Every homomorphism from a Banach algebra into a
commutative semi-simple Banach algebra is continuous.

The following theorem shows that the range of continuous homomor-
phism from a C*-algebra A into a Banach algebra B contains no non-zero
element of the radical of B. This theorem is found in [3].
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THEOREM 3. Let A be a C*-algebra and B be a Banach algebra.
Then for each continuous homomorphism 8 from A into B we have

rad(B) N 6(A) = {0}.

An ideal I of a algebra A is said to be a nil ideal if for each z € I ,
there exists a positive integer n such that ™ = 0, where n depends upon
the element £ € I. An idepl I of a algebra A is said to be a nilpotent
ideal if I™ = {0} for some positive integer n. Here, I" denotes the set of
all finite sums of product of 7 elements taken from I. Hence a nilpotent
ideal is a nil ideal. But S. Grabiner proved that every nil Banach algebra
is nilpotent [2].

The next theorem gives a sufficient condition for a homomorphism of.
C(Q2) to be continuous. Here, C(2) denotes the commutative C*-algebra
of continuous functions on a compact Hausdorff space 2. The theorem
is found in [1].

THEOREM 4. Let 6 be a homomorphism of C(f) into a commutative
Banach algebra B. If the radical of B is a nil ideal, then 6 is continuous.

3. Homomorphic images of C*-algebras

In this section, we investigate the properties of the radical of the
codomain of a homomorphism on a C*-algebra.

LEMMA 5. Let A be a Banach algebra and A; = A® C be the uniti-
zation of A. Then we have

rad(A) = rad(Ay).

PROOF. Define a map f: Ay —» C by f(z,A) = A. Then clearly f is
a multiplicative linear functional on A; with the kernel A. Hence A is
a maximal modular left ideal of A;. Hence rad(A4;) C A. Therefore we
have,

rad(A) = rad(A;) N A = rad(Aj). O
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THEOREM 6. Let A be a C*-algebra and B be a commutative Banach
algebra whose radical is nil. Then for each homomorphism 6 from A into
B we have

rad(B) N 6(A) = {0}.

PROOF. Let § : A — B be a homomorphism from A into B and let b
be an arbitrary element of rad(B)N6#(A). Then there exists an element a.
in A with 6(a) = b. Let A’ be the C*-algebra generated by the hermitian
element a + a*. Let 7 : B — B/rad(B) be the canonical quotient map.
And let § = 7o0. Since B/rad(B) is a commutative semi-simple Banach
algebra,  : A — B/rad(B) is continuous. Hence ker(f), the kernel of 6,
is a closed two-sided ideal of A and so it is self-adjoint. Since a € ker(d),
a* € ker(6). That is §(a*) € rad(B). Therefore we have,

6(a+a*) =b+ 6(a*) € rad(B).

Let 8 : A — B be the restriction of § on A’. Let A}, Br be the
unitization of A/, B, respectively. And let j : A’ — A}, k: B — By be
the inclusion maps. Let ® be the carrier space of the commutative C*-
algebra A%. Then the Gelfand representation A : A7 — C(®), Az, ) =
(z,A)” (z € A/, X € C), is an isometric *-isomorphism of A} onto C(®).
Define a map v : C(®) — By by ¥((z,A)”) = (8'(x), A). Then clearly 9
is a homomorphism of C(®) into B;. And we have

oAoj=kob.

By Lemma 5, rad(B;) = rad(B). Hence rad(By) is a nil ideal. By
Theorem 4, 9 : C(®) — By is continuous. So ko #' is continuous. Since
k is the inclusion map, &' is continuous. By Theorem 3, we have

rad(B) N ¢'(4’) = {0}.

Since ¢’ is the restriction of § on A’, b+6(a*) € rad(B)N@’'(A’). Therefore
we have,
b+ 6(a*) =0.

Similarly considering the C*-subalgebra generated by the hermitian
element i(a — a*), we can show that

b—0(a*) =0.
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Therefore, )
b= 5{(b +6(a*)) + (b—0(a")} = 0.
This completes the proof. d

If B is a Banach algebra satisfying the descending chain condition for
left (or right) ideals, then the radical of B is nilpotent. Consequently we
have the following corollary from Theorem 6.

COROLLARY 7. Let A be a C*-algebra and B be a commutative Ba-
nach algebra satisfying the descending chain condition for left ideals.
Then for each homomorphism 0 from A into B we have

rad(B) N 6(A) = {0}.

COROLLARY 8. Let A be a C*-algebra and B be a commutative rad-
ical nil Banach algebra. If § : A — B is a homomorphism from A into
B then 0 = 0.

PROOF. Since rad(B) N#(A) = {0} and rad(B) = B, 6 = 0. 0O

COROLLARY 9. Let B be a commutative non semi-simple Banach
algebra whose radical is nil. Then B is not a homomorphic image of a
C*-algebra.

PROOF. If there is a homomorphism from a C*-algebra A onto B,
then we have
rad(B) = rad(B) N 6(A) = {0}.

Hence B must be semi-simple. O

EXAMPLE 10. Let L![0,1] denote the Banach space of complex valued
integrable functions on [0,1]. Here, the norm is defined by

1
17l = /0 FOlE (f € Lo, 1)).
If we define

(f*g)(t) = /0 f(s - Hgls)ds (te[0,1])
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for f, g € L'[0,1], then L]0, 1] is a commutative Banach algebra without
identity. This algebra is called the Volterra algebra and denoted by V.
If u(t) =1 (¢t € [0,1]), then

t'n.—l

’U,*n(t) = m (n € N’ te [0’ 1])’

where u*" denotes the n-th convolution power of u. Hence u is a quasi-
nilpotent element. Since the radical of V' coincides with the set of all
quasi-nilpotent elements in V', u belongs to the radical of V. Hence n-th
convolution power of u belongs to the radical of V. That is, the functions
of the form t™ (¢t € [0,1], n € N) belong to the radical of V. Hence all
(ordinary) polynomials on [0, 1] belong to the radical of V. But then all
(ordinary) polynomials on [0,1] are dense in V. It follows that V is a
radical algebra.

For a non-zero element of f of V, let a(f) = inf(supp f), where supp f
is the support of f. Set a(0) = 00. For 0 < a < 1, let

M,={feV:a(f) >a}.

By the Titchmarsh convolution theorem [5], M, is a non-zero closed
ideal of V, and if f € M, then f** € My, (n € N). Hence M, is a
commutative radical nil Banach algebra.

If 0 is a homomorphism from a C*-algebra into M,, then § = 0 by
Corollary 8.
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