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A GEOMETRIC CRITERION FOR THE WEAKER
PRINCIPLE OF SPATIAL AVERAGING

HyukJin KWEAN

ABSTRACT. In this paper we find a geometric condition for the weaker
principle of spatial averaging (PSA) for a class of polyhedral domains.
Let 2, be a polyhedron in R3, n < 3. If all dihedral angles of Q, are
submultiples of 7, then there exists a parallelopiped $n generated by
n linearily independent vectors {¢1;}7_, in R™ containing Qn so that
solutions of Au + Au = 0 in Q, with either the boundary condition
u = 0 or Bu/8n = 0 are expressed by linear combinations of those
of Au+ du = 0 in §, with periodic boundary condition. Moreover,
if {u; j=1 satisfies rational condition, we guarantee the weaker PSA
for the domain Q.

1. Introduction

In this paper we try to find a geometric condition on the domains
2, C R",n = 2,3, for which the principal of spatial averring (PSA) or
the weaker PSA holds. The PSA was introduced by Mallet-Paret and
Sell [3], [4] to prove the existence of an inertial manifold for a class of
reaction diffusion equations of the form

(1.1) ut = vAu + f(z,u)

with particular domains and boundary conditions. This property played
a crucial role in their existence theory of inertial manifold. For their
result, they proved that PSA holds for arbitrary rectangular and a cubic
domains of the equation (1.1) and Kwean [2] found a weaker form of PSA
so that he extended their result into several different types of domains.
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But it is not known for which domains and boundary conditions PSA or
the weaker PSA holds.

Here we introduce some theories of discrete group of isometries, which
are applied for a class of polyhedral domains to decide whether PSA or
the weaker PSA holds. For this purpose, we briefly introduce some ter-
minology and preliminary results about the discrete group of isometries
of E™ and then from these results, one obtains some sufficient conditions
to guarantee the weaker PSA.

2. Definitions and preliminary results

In this section, we study basic properties of discrete groups of isome-
tries.

Let E™ be Euclidean n-space and I(E™) the set of isometries of E™.
Then with the multiplication defined by composition, I{E™) forms a
group, called the group of isometries. Moreover, if I(E™) is given with
the subspace topology inherited from the space C(E™, E™) of continuous
self-map of E™ with compact-open topology, it becomes a topological
group. By a discrete group, we mean a topological group with discrete
topology.

Now throughout the rest of this paper, we consider a finite-sides con-
vex polyhedron P in E™ of finite volume. Let S be a side of P. The
reflection of E™ in the side S of P is the reflection of E™ in the hyper-
plane (S) spanned by S. If G is the group generated by reflections of
E™ in each sides S of P, G is also a topological group as a subgroup
of I(E™). In particular, we are interested in the relationship of convex
polyhedron with a discrete group and a discrete group.

DEFINITION. A convex fundamental polyhedron for a discrete group
G of isometries of E™ is a convex polyhedron P in E™ such that

(1) the interior, P°, of P is a connected set in E™,

(2) {g(P°) : g € G} is a locally finite family of mutually disjoint
subsets of E™,

(3) E™ =U{g(P): g€ G}.

In addition, P is an exact, convex, fundamental polyhedron for a discrete
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group G if for each side S of P, there is an element gs € G such that
S=PnN gs(P).

Moreover, gg is the reflection of E™ in the hyperplane (S) for each side S
of P if and only if the group G is a discrete reflection group with respect
to the polyhedron P.

For a given polyhedron P and the group G generated by reflection
of E™ in the sides of P, our primary objective is to find a geometric
condition on the polyhedron P so that G is a discrete reflection group and
P is an exact, convex, fundamental polyhedron of a discrete reflection
group G. For this purpose, we introduce some terminologies; let S and T
be sides of polyhedron P. Sides S and T are said to be adjacent if SNT
is a side of both S and T. When S and T are adjacent sides of P, we
define a dihedral angle 6(S,T) of P to be the angle formed by S and T.
Moreover, an angle « is a submultiple of an angle 3 if and only if there
is a positive integer n such that a = 'g

With above definitions, one has the following two important results
and the proofs can be found in J. G. Ratcliffe [5]. However, for the
convenience of the reader, we present the basic ideas for the proofs.

PROPOSITION 2.1. Let P be a polyhedron in E™ and let G be a
group generated by reflections of E™ in sides of P. Then G is a discrete
reflection group with respect to the polyhedron P if and only if all the
dihedral angles of P are submultiples of .

PROOF. Assume that G is a discrete reflection group of P. Let S and
T be adjacent sides of P. Then {5, T} is a cycle of sides of P. Then there
exists a positive integer k such that

2 0(S,T) = 27”

and hence 0(S,T) is a submultiple of 7.

Conversely, assume that all dihedral angles are submultiples of 7. The
proof is given by the induction on n. The conclusion is true for n = 1,
so we assume that it is true in dimension n — 1. The idea of the proof
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is to construct a topological space X for which the conclusion is true
and then to show that X is homeomorphic to E™ by the covering space
argument.

Let G x P be the cartesian product of G and P. We topologize G x P
by giving G the discrete topology and G x P the product topology. Then
G x P is the topological sum of the subspaces

{{g} x P:g € G}.

Moreover, the mapping (g, z) — gz is a homeomorphism of {g} x P onto
gP for each g € G.

Let S be the set of sides P and for each § € S and gs be the reflection
of E™ in the side S of P. Let ® = {gs : S € S§}. Now we define a relation
on G x P as follows: two points (g,z) and (h,y) are said to be paired
by ®, written (g,z) v~ (h,v), if and only is g~'h is in ® and gz = hy.
Then this relation becomes an equivalence relation on G x P. Let [g, z]
be the equivalence class of (g,z) and X the quotient space of G x P of
equivalence classes. Then we have the following properties:

(1) each g[P] = {[g,z] : z € P} is connected

(2) {g(P°) : g € G} is a locally finite family of mutually disjoint

subsets of X,

(3) X =U{g[P]:9€G}.
Now we define a function k : X — E™ by &[g,z] = gz. Then this
function x becomes homeomorphism and hence we have a family P =
{g(P) : g € G} satisfying the same properties (1), (2), and (3) in E™.
Then G is discrete and P is an exact, convex, fundamental polyhedron
for G. Therefore, G becomes a discrete reflection group for P. (]

DEFINITION. An n-dimensional crystallographic group is a discrete
group G of isometries of E™ such that E"”/G is compact.

Then, by the result of Proposition 2.1, the discrete reflection group
G in Proposition 2.1 is a n-dimensional crystallographic group. We also
obtain the following result.

PROPOSITION 2.2. Let G be a discrete group of isometries of E™.
Then G is crystallographic if and only if the subgroup N of translations
of G is of finite index and has rank n.
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PROOF. Suppose'that G is a crystallographic. Then G has an abelian
discrete subgroup H of finite index containing N. Since E™/G is compact
if and only if E™/H is compact, H is also crytallographic. Moreover,
from the facts that E™/H is compact and that H is an abelian discrete
group, H must be a lattice subgroup of I(E™) generated by n linearly
independent translations. Hence H = N, and N is of finite index in G
and has rank n.

Conversely, suppose that the subgroup N of translations of G is of
finite index and has rank n. We choose a basis v;, - - - , v, of R™ such that
N is the group generated by the translation of E™ by vy, -+ ,v,. Clearly,
the parallelopiped P spanned by vi,:--,vn is a convex fundamental
polyhedron for N. Since P is compact, E™/N is compact. Therefore,
E™/G is compact. O

From the conclusions of Proposition 2.1 and 2.2, we obtain the fol-
lowing theorem for n = 3.

THEOREM 2.3. Let P be a polyhedron whose all dihedral angles are
submultiples of m. Let G be a group generated by reflections of E3 in
sides of P. Then there exists a parallelopiped P satisfying the following
conditions:

1) P={zeR :z= Z?zlmjll;j,o < z; < 1} where u;’s are
linearly independent vectors in R3,

(2) PC P,

(3) if wy,wy are boundary points of P such that we = wy + p; for
some j = 1,2,3, then there exist z € P and g1, 92 € G such that

wy = g1(x), w2 = go(x).

PROOF. By theresults of Proposition 2.1 and 2.2, G is a 3-dimensional
crystallographic group and therefore G has a subgroup N containing all
translations in G. Moreover, since N has rank 3, there exists a basis
wy, we, ws in R3 which generates the subgroup N. For simplicity, we may
assume that the polyhedron P lies on the first quadrant and it has three
vertices vg, U1, v2 in zy-plane. In particular, we may assume that v is the
origin, v; is a point on z-axis and the origin is connected by only three
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vertices of P which are denoted by vy, vs and v3. We also let 51,55, S3 be
the sides of P containing triple-vertices (0, v2,v3), (0,v1,v2), (0,v1,v3),
respectively, and let P; be the plane in R® containing each side S; of P.

We want to show that there exist translations ¢; in N and vectors p;
such that

(1) ¢j(z) =z + p; for z € R® and j = 1,2,3,
— —
(2) the vectors %j’s are linearly independent in R3 such that Oy, is
parallel to Ov;.

For this purpose, we let T,,; be a translation in N such that for each
integer n € Z and j =1,2,3,

Tnjz =z +nw;, forall ze€ R

First, we consider the collection of translations of the form {T,; : n € Z}.

If 0;; // (ﬂ, we take w; for u;. Otherwise, for each n, each translation
Tn1 maps the plane P; to another plane denoted by P,;. Then each
P, meets at one point z,; with the planes P, P; and then each z,
belongs to a G-orbit, G,, = {g(v;) : g € G}, where v; is a vertex of P.
Moreover all dihedral angles at 2,1, 6(Pn1, P2),0(Pn1, P3), 6( P, P3), are
the same as those at the origin, 8( Py, P»), 0( Py, Ps), 0( P2, P3). Therefore
if 2,1 € G, either v; is the origin or v; is a vertex of P satisfying above
property. Since P is a polyhedron, there are only finite number of such
vertices of P. Hence, if 211 ¢ Gy, there exists a positive integer ny such
that z,,1 € Go. Let P’ be a copy of P such that it contains z,,; and it
has three edges e; connected with z,,; which are parallel to and have

the same direction with O:; Also let r; be a vertex of P’ which is the
other endpoint of e;.

On the other hand, since R® = U{g(P) : g € G}, there exists an
element ¢ : P — P’ in G such that ¢(0) = 2,,1. Suppose that ¢(v;) =7;
for each j. We claim that ¢ is a translation in G and hence in N; since
¢ is a composite of finitely many reflections, ¢ is of the form

¢(z) = Az +b for z € R®

where A is 3 x 3 invertible matrix and b is a vector in R3. We note
that any reflections leave all distance and angles invariant but they are
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orientation reversing. Then since ¢(v;) = r; for each j, r; = v; + zn;1
and hence b = 2,,; and A = I. Therefore, ¢ must be a translation.
Moreover, if y; € P1, then y; + 2n,1 € Pn,1. Now there exists a point
x € OP and an element g € G such that y; = g(z) and hence implies
Y1+2n,1 = ¢pog(z) for pog € G. Therefore, the planes P; and P, satisfy
the 3"¢ requirement of Theorem 2.3. Now for ¢;, we take py = 2p,1.

If ¢(v;) # r; for some j, then ¢ just changes left and right of P and
hence P’ has different left and right at the point z,,; with those of P
at the origin. But there are only finitely many such cases. Hence, we
obtain another copy P” of P which has the same left and right at some
point z,1 € Gp as of P. Thus we have a desired translation ¢ : P — P”.

Similarly, we can do the same procedure with ws, w3 so that we obtain

translations of the form ¢;(z) = z + u;,« € R® with (ﬁ; // 65; Now we
define a polyhedron P in R2 as follows:

3
P= :cER3:z=Z.7:jpj, 0<z;<1
=1

Then the polyhedron P satisfies all requirements of Theorem 2.3. O

REMARK. We call the requirements (1), (2), (3) of Theorem 2.3 a P-

property and P a parallelopiped generated by p1, po, 3 with P-property
for P.

3. The weaker PSA

Now we introduce the definition of the weaker PSA. Let H = L%(Q2)
where 2 C R" is a bounded domain. For any A > 0 let P, denote the
canonical orthogonal projection onto the finite dimensional subspace

Py = Span{em : Am < A}
of H where {e; : j = 1,2,---} be complete orthonormal set of eigen-

functions e; corresponded to eigenvalues A; of —A with a given choice
of boundary conditions and let Q) = I — P;.
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For any v € L™ we let B, denote the operator on L? defined by
(Bou)(z) = v(z)u(z), wel?

and let ¥ denote the mean value

0= (volQ)_I/Qv(x)da:.

Then the weaker PSA gives a comparison between the vector fields
induced by B,, and 91 on the finite dimensional range of (Py4+x — Pyr_s).
Now we define a weaker PSA as follows.

DEFINITION. For a given (bounded Lipschitz) domain Q ¢ R*,n < 3,
and choice of boundary conditions for the Laplacian, we say the weaker
principle of spacial averaging holds if there exists a quantity £ > 0 such
that for every ¢ > 0, x > 0 and any bounded subset B ¢ H?(), there
exists arbitrarily large A = A(B) > &, such that

(3.1) [|(Prtr — Pa—i)(Bo = B3I)(Prtn — Pr—x)llop < €
holds for any v € B ; and such that

(3.2) /\m+1 - /\m 2 €

where m satisfies A, <A < Ay

Since the weaker PSA and PSA heavily depend on the eigenvalues
and the eigenfunctions of —A, it is natural to consider the eigenvalue
problem

(3.3) Au+du=0 inQ

and we consider one of the following boundary conditions for the equation
(3.3):

(3.4) ou

Neumann : — =0 on 9%.

{ Dirichlet : ©=0 on 380
on
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We also consider periodic boundary conditions when the domain is a
cartesian product of intervals.
First of all, we consider a special case. Let {2 be given by

3
(3.5) Q={ zcR3: x=ij,uj,0§xj§1
i=1
where ;’s are linearly independent vectors in R® and we consider -
periodic boundary conditions for the equation (3.3), that is, if 9Q =
U?=11"j such that I';13 =I'; 4+ p;, then
(3.6) u(r) =u(z+p), zel; forj=1,2,3.
For p; = (141, 2, 53) € R3, let A be a column matrix of u1, pg, p3.

By using the symmetric property (3.6) and computing the calculation,
one obtains the next lemma.

LEMMA 3.1.. The eigenvalues and the eigenfunctions of —A for (3.5), |
(3.6) are of the form: for each k = (ki, ko, k3) € Z3,

47?2

(3.7) Ak = A

12 |k10'1 + koo + k30’3|

(38) e, 2) = exp (751 (oo + By +72)

where | - | is the usual norm in R® and o;’s and («, 8,7) are given by

01 = H2 X 43, 02 = U3 X M1, O3 = M1 X U2,

(3.9) 1 p12 Ha3 a . k1
|A| =det | po1 poz a3 |, B|=A""| ke
H31  M32 33 v ks

The following lemmas play important roles for proving the weaker

PSA. First, we define a new inner product and a norm in R3. For z,y €
R3, we define

3 3
(@,y) = | D =36, | - (Z yi5i> , 2] = (z,2)
i=1 i=1
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LU 4

where is the usual inner product in R® and 0; = ga for each

7 = 1,2,3. Here the choice of o3 can be replaced by o; or o3. Then for
each k € Z3, the eigenvalues in (3.7) can be expressed by

472
Ak = TAR |os|? (k]

Although the next lemma is modified from one of Mallet-Paret and
Sell [4], it is worth proving it because we are dealing with a different
type of lattice points in RS3.

LEMMA 3.2. Suppose that (0;-0;)/(0«-0;j) is rational number when-
ever oy -0 # 0 for 1,5,4',j' = 1,2,3. For each k € Z3, let [k)? = (k, k).
Then there exists a quantity & > 0 such that for any given £ > 0,d > 1,
there exists arbitrary large A > 0 such that the following statements
hold:

(1) if[k)%, )2 ()\ K, A-}—n], one has either k =l or [k—1] > d; and
(2) [k]> ¢ (A — 2,/\-i— §) for k € Z3.

PROOF. Since (0;-0;)/(0s -05) is rational number, each §;-9; is also
rational number and hence let 4;-6; = %’- where p;; and g;; are relatlve

prime integers. Let & = L.C.M.{p;;} be fixed where L.C.M. means least
common multiple. Then for any k € Z3, there exist integers n and r
such that

[k]2=n+§, 0<r<a.
Therefore, with £ = % we see that there are arbitrarily large A such
that [k]2 ¢ (A — %, A+ 5). For the rest of the proof we will consider only
such A. Let ) be fixed and let N be the annular region
Np={zeR: A—k<[z]2<A+&}
Suppose that k, | € N3 N Z% and 0 < [k — ] < d. Then for j = -k,

[ =[5 + K]? = (5] + 2(k, 5) + [K]?,
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where (-,-) is defined. As a result, one obtains

(ko)1 < 5] W2~ 62 = 7|

|2~ (817 1+ 5
d2

< —.
K+ 3

<

[N

For each j with 0 < [j] < d, let C; = {z € R®: |(z,j)| < k+ ‘12—2} and let
C = Uo<jj<a Ci- Then k € C; for some j. If (1) fails for this choice of
A, then

CNN}NZ3£0.

Consider k € C N Ng N Z3. Then one has

d?
(06,3} < mt+ 5

and

v = (k,J)
= k161 - (J161 + 202 + §303) + k202 - (j101 + 202 + j303)
+ k303 - (j161 + j202 + j3ds)

for some j and some v = 2 where 0 < [j] < d and n is an integer such
that |2| <k + %. Since v = 2 for some integer n, there is only a finite
number of v satisfying |y| = |2]| < k+ %i. On the other hand since 5 # 0,

one has
;- (161 + J2b2 + jads) # 0

for some ¢ = 1,2,3. Otherwise, j181 + j102 + j3ds is either orthogonal
to all &; or equal to 0. Since {8;,082,83} generates R3, both cases are
reduced to the case 5161 + 7102 + 7383 = 0 which contradicts that j # 0.
So we may assume that

03 - (j161 + J202 + j3d3) # 0.



348 Hyukjin Kwean

Then by solving (k, j) = v for k3, one finds

1 2
k3=l—-£-k1—p— 2
P3  P3 pP3

where p; = 6; - (161 + j202 + j363) for each i = 1,2, 3. Hence by substi-
tuting k3, one has

(k]2 =k218 — 22012 + k185 — 22832 + 21k (81 — 22b5) - (82 — £265)
P3 P3 P3 P3
+ aky (= 2281632 + L6y - 63) + aka(~ 12216312 + L5 - 63)
3 p3 3 p3
2
2l 2
+ —|d3]°.
pgl 3|
Then we define a function T}, of quadratic forms on Z? with rational

coefficients by

(3.10) Tjn(l, 1) = a;l% + bilila + ¢;12 + 85411 + tjyla + 754

where
( P1 41 p2
a; = |61 — p_363'2’ bj = 2(6, — 553) - (62 — E(Sg),
g P22 o s s APLic 2
(3.11) G = |62 p363| » Siny 4(p351 d3 ——‘pg 163“),
2
v P2« 12 2,
173 =4(—08y 03 — —=|03 y T4, = —|d3
=40 6= 21557, 7y = Tl

Then the discriminant of Tj ., in (3.10) is

2
b2—da;c; = 4 [(51 - ﬂsg,) : (52 - @53)] —4
P3 P3

Let 1 = 61 — %53,’7’2 = 0y — %53. Then

2 2
b5y — P25,
p3

5 — s,
P3

b? — 4ajcj = —4|7‘1|2|T212(1 — cos? 97‘17'2) <0
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where the angle 6, ,, is one made by = and 7. Moreover, since the
vectors {0;} are linearly independent, the equality cannot hold. Hence
the discriminant of T}, is negative. One then has

(3.12) Tj,n,(kh k) € A=k, A+kK]

since k € Ng.

Nowlet 7= {T;, : 0 < [j] < d,]v| = |&| < K+ %, for some n €
Z}. Then since the indices j and v range over finite sets, 7 is a finite
collection of functions T ., defined by (3.10), (3.11). Then by Spectral
Gap Theorem proved by Mallet-Paret and Sell [4] (also see [6]), given
any h > 0 there exists arbitrary large m such that

Tjn ¢ [m,m+h], for T;,€T and (I1,l2) € Z*%

Therefore, with h = 2 4 2k, there exists a m such that for any T; ., € T
and l € Z2

Tj(lyl2) € [mym + A, (A—K,A+&] C[m,m+ h]

for some A satisfying the second assertion (2). Therefore (3.12) is impos-
sible for this A. As m can be chosen arbitrarily large, the proof is now
complete. O

REMARK. We call the condition on {o;} rational conditions. When
the domain is a cubic domain, then this condition is reduced to the
rational condition of Mallet-Paret and Sell [4].

Another lemma we introduce is given as follows.

LEMMA 3.3. Let Q C R? be given in (3.5). Fix boundary conditions
for —A given in (3.6) and let B be a bounded subset of H?(2). Then for
any € > 0 and k > 1, there exists arbitrarily large A\ = A(B) > & such
that

(3.13) \ /Q(v —)pdx| <€

for any v € B and p € Range (Pxix — Pr_x) C L2(Q) with ||p|| = 1.
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PROOF. We note that the product of any two eigenfunctions of the
form in (3.8) is also eigenfunction, i.e.,

(3.14) . Fifi = froi

where f means the complex conjugate of f. With the property (3.14),
the result follows from the property (1) of Lemma 3.2 and the facts that
the set of eigenfunctions of Laplace operator forms complete orthogonal
basis for L2 and that any bounded set of H? is compact subset of L2 for
n < 3. For more detailed proof, we mention Kwean [2]. O

Combining the results of Lemma 3.1-3.3, one obtains the following.

LEMMA 3.4. The weaker PSA hold for the domain and boundary
conditions in (3.5), (3.6).

PROOF. We fix a quantity £ > 0 satisfying the property (2) of Lemma
3.2. Let € > 0,5 > 0, and a bounded subset B C H?(f2) be given. Then
we have arbitrarily large A > « satisfying the property (1) of Lemma 3.2
and the inequality (3.13) in Lemma 3.3. Therefore the inequalities (3.1)
and (3.2) can be obtained by the choices of £ > 0 and A. a

Finally, one can formulate a condition on the domain for the weaker
PSA as follows.

THEOREM 3.5. Let P be a polyhedron in R*,n = 2,3, whose all
dihedral angles are submultiplies of w. Let P be a parallelopiped gen-
erated by p1, p2, u3 with P-property for P. Then for n = 2, the weaker
PSA holds for P with boundary conditions in (3.4). For n = 3, one has
the same conclusion provided {o;} generated by {u;} satisfies rational
conditions.

When n = 2, P is a polygon in R? and there are only four cases
satisfying the assumption which are

ms-(310), (G50, GLI)

(01,62,05,00) = (5,5 5:5) -

(3.15)

For n = 3, we consider the next lemma for the Dirichlet boundary
conditions.
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LEMMA 3.6. Let P and P be polyhedrons given in Theorem 3.5 and
let R; be a reflection of R3 for each side S; of P. There exists a canonical

isomorphism between L2(P) and a subspace V of L*(P),
V={feL*P):R;f =—f for all R;}

obtained by f — f|p for f € V.

PROOF. Let G be a group generated by reflections of E™ in sides of
P. Since P is a parallelopiped satisfying P-property for P, P is the union
of a finite number of copies of P by elements of G, i.e.,

m
P=|Jgi(P
=1
for some g; € G and some integer m. Since g; € G, let g; be the compo-

sition of k; number of reflections of E™ in sides of P. Then if f is in V,
one has, for each z € P and each j,

; — f(g;j(z)) if k;j= odd
fl@y=4 . '
flgj(z)) if k;j= even.

Hence the value and the L2—norm of f € V on P determine those of f
on any gJ(P) say P. Conversely, if f is in L2(P), then one has a unique
extension f of f up to P by the rule (3.16). Then fisinV and f decides
the value and L2-norm of f on P. In this sense, a map from V to L? (P)
obtained by f f |p becomes an isomorphism. O

(3.16)

In particular, the eigenfunction of —A on P can be obtained by solving
the equation (3.3) on V and the restriction to P will automatically satisfy
the Dirichlet boundary conditions. Therefore the eigenfunctions of —A
on P are given by linear combination of the form

(3.17) f(:z: Y, 2) = exp (|A| ) (az + By + v2)

where a, 3,7 and |A| are of the form in (3.9).
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For the Neumann boundary conditions, for given solution f on P of
(3.3), we can lift f to a function f on P satisfying

ij=f, z € P, forall Rj

fle=f. f will still be an eigenfunction on P and hence a linear com-
bination of (3.17) with the same values of («, 3,7). Hence we have the
same result as one of Lemma 3.6 with

= {f € L*(P): R;f = f for all R;}.

PROOF OF THEOREM 3.5. For n = 2, P is one of triangles and rec-
tangle in (3.15) and these cases are already known by Mallet-Paret and
Sell {4] and Kwean [2]. For n = 3, the result comes from the Lemma 3.4
because any eigenfunction of —A on P is given by a linear combination
of the functions in (3.17). O
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