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WHITE NOISE HYPERFUNCTIONS

SOON-YEONG CHUNG AND EUN GU LEE

ABSTRACT. We construct the Gelfand triple based on the space G,
introduced by Sato and di Silva, of analytic and exponentially de-
creasing functions. This space denoted by (G) of white noise test func-

d 2
tionals are defined by the operator coshvA, A = — (E) +z2 41,

We also note that many properties like generalizations of the Paley—
Wiener theorem and the Bochner-Schwartz theorem hold in this space
as in the space of Hida distributions.

1. Introduction

Let S(R) be the Schwartz space of real valued rapidly decreasing func-
tions. Then its dual space S’'(R) consists of the tempered distributions
and we have the Gelfand triple

S(R) c L*(R) c S'(R).

Let u be the standard Gaussian measure on S’(R), i.e., its characteristic
function is given by

/ =0 du(z) = e /2, ¢ e S(R),
s'(®)

where (-,-) is the pairing of S(R) and S'(R), and | - |o is the norm of
L?(R). We call the space (S’(R), dy) the white noise space of Hida.

On the other hand, we introduce the real versions of the space G and F
of test functions for the Fourier ultrahyperfunctions and the Fourier hy-
perfunctions respectively in {4,7], which are both invariant under Fourier
transform as follows.
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DEFINITION 1.1. We denote by G or G(R™) the set of all ¢ € C°(R")
such that for any k, h > 0

(1.1) Gl s = sup |0°¢(x)| exp k|z|

a€Ng

where Ny is the set of all nonnegative integers. The topology in G defined
by the semi-norms in (1.1) makes G a Fréchet space. In fact, it is the
projective limit topology over all h > 0 and k > 0.

REMARK. Replacing the quantifier any by some in the above defini-
tion we obtain the space F of test functions for the Fourier hyperfunc-
tions. See [7] for more details.

In this paper we will construct the Gelfand triple based on the above
space G’ and investigate many properties of this space, which are natural
extension of Paley-Wiener theorem and Bochner-Schwartz theorem.

2. Construction of Gelfand triples

The Hermite function of order 7, j > 0, is defined by
ej(@) = (VA2ral)"V2Hj(z)e™ /2,

where H;(z) is the Hermite polynomial of degree j, j > 0. It is easy
to see that the set {e;;j > 0} is contained in G(R) and forms an or-
thonormal basis for L2(R). Let A be the Hermite operator and B be the
following differential operators of infinite order, which are defined by

d 2
A=—<—) +z2+1,
dz
=Y oAt
k=0 k

Note that the operator B is formally equal to cosh v/A and that e; is an
eigenfunction of A with eigenvalue 25 4 2, i.e.,

Ae; = (25 + 2)ej, j2>0.
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Therefore we obtain

Be; = (cosh \/2j + 2)e;, j>0.
For each p > 0 we define a norm on G(R) by

|flo=|Bflo, fe€G(R)
where | - |o is L2-norm. Equivalently, this norm is given by

1/2

\flp = Z(cosh V25 +2)% < f,e; >?
i=0

Let G,(R) be the completion of G(R) with respect to the norm |-|,. Then
Gp(R) becomes a Hilbert space and we have a natural inclusion relation;

GaCGyCL? q2p>0.
In fact, if ¢ > p > 0 it follows

[fle <077 P|fley €Y,

where 6 = (cosh v/2) 1.
Let fpq;Gq — Gp be the canonical injection. Then we have the fol-
lowing

LEMMA 2.1. We retain the same notations and assumptions as above.
The natural injection fp pir; Gp+r — Gp is of Hilbert-Schmidt type for
allp > 0.

PRrROOF. Note that {(cosh+/25 + 2)_(”*"‘)63'}‘;‘;0 is a complete ortho-
normal basis for G, ,. Since we can easily obtain that

o0 [e o]
Y " l(cosh /25 +2)~ P e |2 =D "(cosh /25 + 2) 7%
Jj=0 j=0

o0
< Z e~ 2(27+2)p 00,
3=0
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fp,p+r is of Hilbert-Schmidt type. O

It follows from Lemma 2.1 that G(R) can be considered as the pro-
jective limit of the family {Gp(R)|p > 0} and G(R) becomes a nuclear
Fréchet space. Thus we have

G'(R) = Up»0Gy(R) = ind lim G, (R).

p—roo

For p > 0, let G_, be the completion of L? with respect to the norm

1/2
|fl-p =B Pflo = (Z(cosh \/2j+2)‘2”<f,ej>2) , fel
7=0

Then the dual space G,(R) of G(R) is given by G_p(R). Moreover, we
have the following inclusion maps:

G(R) C G,(R) € L*(R) € Gy(R) C §'(R), p20.

Comparing this triple with the Gelfand triple of Hida based on the
Schwartz space we can easily see that

Gp(R) C Sp(R) C L*(R) C S,(R) C Gy(R).

3. Construction of generalized functionals

By the Bochner-Minors theorem, there exists a unique probability
measure g on G'(R) such that

/ ez(:l:,f)d“(;z;) = exp (—|f|(2)/2) ’ f € g’
g’ (R)

where | - |o is the L2-norm.
By the Wiener-Ité theorem, ¢ € L%(G'(R),n) = (L?) can be repre-
sented by

(3.1) 6= IL(fa), fneL¥r

n=0
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where I,, is the multiple Wiener integral of order n and L%@’" denotes the

n-th symmetric tensor product of the complexification of L2. Moreover,
for ¢ € (L?) we have

[0 o)
lBll3 = nllfal3
n=0

where || - ||o stands for the norm of (L2?). We now define an operator
I'(B) densely defined on (L?) by

00
T(B)¢p =Y _ In(B®"fy).
n=0
The Sobolev spaces on G'(R) are constructed in a similar way as in §2.
For p > 0, we define a norm || - ||, by

llelle = [IT(B)Pello-
It is easy to see that ||¢||o < |l¢|lp, » = 0 and so we define the Hilbert
space (G)p for p > 0 by
(Dp = {v € (L?);l¢llp < o0}
We obviously have
(G)g € (9)p C (L2), g2p=0.

We write (G) = go(g)p and introduce on (G) the projective limit topol-

P>
ogy of the family of Hilbert spaces {(G)p|p > 0}. On the other hand, we
have ||| < ||¢||2 and so we define the Hilbert space (G)_,, for p > 0
by

(G)—p = completion of (L?) with respect to || - ||—p.
It is easy to see that the dual space (G); of (G), is given by (G)_,. Let
(G)* denote the dual of (G). Then we can easily see that
(g) = pgo(g)—p,

and introduce on (G)* the inductive limit topology of the family of spaces
{(G)-plp > 0}. Thus we construct the triple

(G) c (L?) c ()"
Also, we can easily see that

(9) c(S) < (L?) c (8) < (9).
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ExXAMPLE. The Wick exponential
Pf(x) = e(:r:,f) ‘= €Xp ((wa.ﬂ - |f|(2)/2) ) f € ga TE g,(R)

is contained in (G). For, the functional I'y has the following decomposi-

tion
o] 1 on
r=3 0 ()
as in [6] and for any p > 0

o0 oo
1
el = D opIBP i = ZO — 1 = e < oo.
n= n==

Since (G) C (L?), each ¢ € (G) also admits an expression as in (3.1).
It is then important to know when ¢ € (L?) belongs to (G). In this
connection we have the following analogs of the representation theorems
in [6].

THEOREM 3.1. Let ¢ € (L?) be expressed as

6= I(fa), fneLE®"

n=0
Then ¢ € (G) if and only if f, € ggm for allm = 0,1,---, and 332 !
| fnl2 < oo for all p > 0.

THEOREM 3.2. For each ® € (G)* there exists a unique sequence
{Fn}%o=0) Fn € (gg)n);ym such that

(2.2) (@,8)) = Y _ nl{Fn, fn),

n=0

for all ¢ € (G) with¢ =3 o o In(frn) Where fr € Qg’“ with Y>> o n'|fn|p
< oo forallp>0.

Conversely, for a sequence {Fn}22o, Fr € (GE™)2ym With Y o onl|Fy|2,
< oo for p > 0, a generalized functional ® € (G)* is defined by (2.2).

In this case,

|1®]|—p = _nllFa2,
n=0

By Example in §2 we can define S-transform on (G)*.
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DEFINITION 3.3. The S-transform of ® € (G)* is a function on G
defined by
(S®)(f) = (@,:exp(-, f):), f€G

Finally, as a generalization of the results in Kuo [8] we can obtain
the characterization theorems for white noise hyperfunctions in terms of
their S-transform, which is an analog of Paley-Wiener theorem. Also, we
can obtain the characterization theorems for positive white noise hyper-
functions, which is an analog of Bochner-Schwartz theorem in Fourier
analysis.

ACKNOWLEDGMENT. Eun Gu Lee is supported by NON DIRECTED
RESEARCH FUND, Korea Research Foundation, 1996 and Soon-Yeong
Chung is partially supported by KOSEF 966-0100-001-2 and GARC-
KOSEF.

References

[1} S.-Y. Chung and D. Kim, Distributions with erponential growth and Bochner-
Schwartz theorem for Fourier hyperfunctions, Publ. RIMS, Kyoto Univ. 31 (1995),
829-845.

[2] J. Chung, S.-Y. Chung and D. Kim, A characterization for Fourier hyperfunc-
tions, Publ. RIMS, Kyoto Univ. 30 (1994), 203-208.

, Positive definite hyperfunctions, Nagoya Math. J. 140 (1995), 139-149.

S.-Y. Chung, D. Kim and S. K. Kim, Solvability of Mizohata and Lewy operators,

J. Fac. Sci. Univ. Tokyo, Sect. IA 40 (1993), 63-71.

, Structure of the extended Fourier hyperfunctions, Japan. J. Math. 19
(1993), 217-226.

[6] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit, White noise: An infinite dimen-
sional calculus, Kluwer, Dordrecht, 1993.

[7] K. H. Kim, 8.-Y. Chung and D. Kim, Fourier hyperfunctions as the boundary
values of smooth solutions of heat equations, Publ. RIMS, Kyoto Univ. 29 (1993),
287-300.

[8] H.-H. Kuo, Lectures on white noise analysis, Soochow J. Math. 18, 229-300.

{9] N. Obata, Elements of white noise calculus, Lect. Notes in Math. Vol. 1577,
Springer, Berlin-New York, 1995.




336 Soon-Yeong Chung and Eun Gu Lee

Soon-Yeong Chung

Department of Mathematics
Sogang University

Seoul 121-742, Korea

E-mail: sychungQccs.sogang.ac.kr

Eun Gu Lee

Department of Mathematics
Dongyang Technical College
Seoul 152-714, Korea

E-mail: eglee@orient.dytc.ac.kr



