WHITE NOISE HYPERFUNCTIONS

SOON-YEONG CHUNG AND EUN GU LEE

ABSTRACT. We construct the Gelfand triple based on the space \mathcal{G} , introduced by Sato and di Silva, of analytic and exponentially decreasing functions. This space denoted by (\mathcal{G}) of white noise test functionals are defined by the operator $\cosh\sqrt{A},\,A=-\left(\frac{d}{dx}\right)^2+x^2+1.$ We also note that many properties like generalizations of the Paley–Wiener theorem and the Bochner–Schwartz theorem hold in this space as in the space of Hida distributions.

1. Introduction

Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space of real valued rapidly decreasing functions. Then its dual space $\mathcal{S}'(\mathbb{R})$ consists of the tempered distributions and we have the Gelfand triple

$$\mathcal{S}(\mathbb{R}) \subset L^2(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R}).$$

Let μ be the standard Gaussian measure on $\mathcal{S}'(\mathbb{R})$, i.e., its characteristic function is given by

$$\int_{\mathcal{S}'(\mathbb{R})} e^{i\langle x, \xi
angle} d\mu(x) = e^{-|\xi|_0^2/2}, \quad \xi \in \mathcal{S}(\mathbb{R}),$$

where $\langle \cdot, \cdot \rangle$ is the pairing of $\mathcal{S}(\mathbb{R})$ and $\mathcal{S}'(\mathbb{R})$, and $|\cdot|_0$ is the norm of $L^2(\mathbb{R})$. We call the space $(\mathcal{S}'(\mathbb{R}), d\mu)$ the white noise space of Hida.

On the other hand, we introduce the real versions of the space \mathcal{G} and \mathcal{F} of test functions for the Fourier ultrahyperfunctions and the Fourier hyperfunctions respectively in [4,7], which are both invariant under Fourier transform as follows.

Received August 10, 1998. Revised September 14, 1998.

1991 Mathematics Subject Classification: 46F15, 46F25.

Key words and phrases: white noise, hyperfunction.

DEFINITION 1.1. We denote by \mathcal{G} or $\mathcal{G}(\mathbb{R}^n)$ the set of all $\phi \in C^{\infty}(\mathbb{R}^n)$ such that for any k, h > 0

(1.1)
$$|\phi|_{k,h} = \sup_{\substack{x \in \mathbb{R}^n \\ \alpha \in \mathbb{N}_n^n}} \frac{|\partial^{\alpha} \phi(x)| \exp |k|x|}{h^{|\alpha|} \alpha!} < \infty$$

where \mathbb{N}_0 is the set of all nonnegative integers. The topology in \mathcal{G} defined by the semi-norms in (1.1) makes \mathcal{G} a Fréchet space. In fact, it is the projective limit topology over all h > 0 and k > 0.

REMARK. Replacing the quantifier any by some in the above definition we obtain the space \mathcal{F} of test functions for the Fourier hyperfunctions. See [7] for more details.

In this paper we will construct the Gelfand triple based on the above space \mathcal{G}' and investigate many properties of this space, which are natural extension of Paley-Wiener theorem and Bochner-Schwartz theorem.

2. Construction of Gelfand triples

The Hermite function of order $j, j \ge 0$, is defined by

$$e_j(x) = (\sqrt{\pi}2^n n!)^{-1/2} H_j(x) e^{-x^2/2},$$

where $H_j(x)$ is the Hermite polynomial of degree $j, j \geq 0$. It is easy to see that the set $\{e_j; j \geq 0\}$ is contained in $\mathcal{G}(\mathbb{R})$ and forms an orthonormal basis for $L^2(\mathbb{R})$. Let A be the Hermite operator and B be the following differential operators of infinite order, which are defined by

$$A=-\left(rac{d}{dx}
ight)^2+x^2+1, \ B=\sum_{k=0}^{\infty}rac{1}{(2k)!}A^k.$$

Note that the operator B is formally equal to $\cosh \sqrt{A}$ and that e_j is an eigenfunction of A with eigenvalue 2j + 2, i.e.,

$$Ae_j = (2j+2)e_j, \quad j \geq 0.$$

Therefore we obtain

$$Be_j = (\cosh\sqrt{2j+2})e_j, \quad j \ge 0.$$

For each $p \geq 0$ we define a norm on $\mathcal{G}(\mathbb{R})$ by

$$|f|_p = |B^p f|_0, \quad f \in \mathcal{G}(\mathbb{R})$$

where $|\cdot|_0$ is L^2 -norm. Equivalently, this norm is given by

$$|f|_p = \left(\sum_{j=0}^{\infty} (\cosh\sqrt{2j+2})^{2p} < f, e_j >^2 \right)^{1/2}$$

Let $\mathcal{G}_p(\mathbb{R})$ be the completion of $\mathcal{G}(\mathbb{R})$ with respect to the norm $|\cdot|_p$. Then $\mathcal{G}_p(\mathbb{R})$ becomes a Hilbert space and we have a natural inclusion relation;

$$\mathcal{G}_q \subset \mathcal{G}_p \subset L^2, \quad q \geq p \geq 0.$$

In fact, if $q \ge p \ge 0$ it follows

$$|f|_p \le \delta^{q-p} |f|_q, \quad f \in \mathcal{G}_q$$

where $\delta = (\cosh \sqrt{2})^{-1}$.

Let $f_{p,q}; \mathcal{G}_q \to \mathcal{G}_p$ be the canonical injection. Then we have the following

LEMMA 2.1. We retain the same notations and assumptions as above. The natural injection $f_{p,p+r}$; $\mathcal{G}_{p+r} \to \mathcal{G}_p$ is of Hilbert-Schmidt type for all $p \geq 0$.

PROOF. Note that $\{(\cosh\sqrt{2j+2})^{-(p+r)}e_j\}_{j=0}^{\infty}$ is a complete orthonormal basis for \mathcal{G}_{p+r} . Since we can easily obtain that

$$egin{aligned} \sum_{j=0}^{\infty} |(\cosh\sqrt{2j+2})^{-(p+r)}e_j|_p^2 &= \sum_{j=0}^{\infty} (\cosh\sqrt{2j+2})^{-2p} \ &\leq \sum_{j=0}^{\infty} e^{-2(2j+2)p} < \infty, \end{aligned}$$

 $f_{p,p+r}$ is of Hilbert-Schmidt type.

It follows from Lemma 2.1 that $\mathcal{G}(\mathbb{R})$ can be considered as the projective limit of the family $\{\mathcal{G}_p(\mathbb{R}) \mid p \geq 0\}$ and $\mathcal{G}(\mathbb{R})$ becomes a nuclear Fréchet space. Thus we have

$$\mathcal{G}'(\mathbb{R}) = \bigcup_{p \geq 0} \mathcal{G}'_p(\mathbb{R}) \cong \operatorname{ind} \lim_{p \to \infty} \mathcal{G}'_p(\mathbb{R}).$$

For $p \geq 0$, let \mathcal{G}_{-p} be the completion of L^2 with respect to the norm

$$|f|_{-p} = |B^{-p}f|_0 = \left(\sum_{j=0}^{\infty} (\cosh\sqrt{2j+2})^{-2p} \langle f, e_j \rangle^2\right)^{1/2}, \quad f \in L^2.$$

Then the dual space $\mathcal{G}'_p(\mathbb{R})$ of $\mathcal{G}(\mathbb{R})$ is given by $\mathcal{G}_{-p}(\mathbb{R})$. Moreover, we have the following inclusion maps:

$$\mathcal{G}(\mathbb{R}) \subset \mathcal{G}_p(\mathbb{R}) \subset L^2(\mathbb{R}) \subset \mathcal{G}'_p(\mathbb{R}) \subset \mathcal{G}'(\mathbb{R}), \quad p \geq 0.$$

Comparing this triple with the Gelfand triple of Hida based on the Schwartz space we can easily see that

$$\mathcal{G}_p(\mathbb{R}) \subset \mathcal{S}_p(\mathbb{R}) \subset L^2(\mathbb{R}) \subset \mathcal{S}_p'(\mathbb{R}) \subset \mathcal{G}_p'(\mathbb{R}).$$

3. Construction of generalized functionals

By the Bochner–Minors theorem, there exists a unique probability measure μ on $\mathcal{G}'(\mathbb{R})$ such that

$$\int_{\mathcal{G}'(\mathbb{R})} e^{i\langle x,f
angle} d\mu(x) = \exp\left(-|f|_0^2/2
ight), \quad f\in\mathcal{G},$$

where $|\cdot|_0$ is the L^2 -norm.

By the Wiener–Itô theorem, $\phi \in L^2(\mathcal{G}'(\mathbb{R}), \mu) = (L^2)$ can be represented by

(3.1)
$$\phi = \sum_{n=0}^{\infty} I_n(f_n), \quad f_n \in L_{\mathbb{C}}^{2\widehat{\otimes}n}$$

where I_n is the multiple Wiener integral of order n and $L_{\mathbb{C}}^{2\widehat{\otimes}n}$ denotes the n-th symmetric tensor product of the complexification of L^2 . Moreover, for $\phi \in (L^2)$ we have

$$||\phi||_0^2 = \sum_{n=0}^{\infty} n! |f_n|_0^2$$

where $||\cdot||_0$ stands for the norm of (L^2) . We now define an operator $\Gamma(B)$ densely defined on (L^2) by

$$\Gamma(B)\phi = \sum_{n=0}^{\infty} I_n(B^{\otimes n} f_n).$$

The Sobolev spaces on $\mathcal{G}'(\mathbb{R})$ are constructed in a similar way as in §2. For $p \geq 0$, we define a norm $||\cdot||_p$ by

$$||\varphi||_p = ||\Gamma(B)^p \varphi||_0.$$

It is easy to see that $||\varphi||_0 \le ||\varphi||_p$, $p \ge 0$ and so we define the Hilbert space $(\mathcal{G})_p$ for $p \ge 0$ by

$$(\mathcal{G})_p = \{ \varphi \in (L^2); ||\varphi||_p < \infty \}.$$

We obviously have

$$(\mathcal{G})_q \subseteq (\mathcal{G})_p \subseteq (L^2), \quad q \ge p \ge 0.$$

We write $(\mathcal{G}) = \bigcap_{p \geq 0} (\mathcal{G})_p$ and introduce on (\mathcal{G}) the projective limit topology of the family of Hilbert spaces $\{(\mathcal{G})_p | p \geq 0\}$. On the other hand, we have $||\varphi||_{-p} \leq ||\varphi||_2$ and so we define the Hilbert space $(\mathcal{G})_{-p}$ for $p \geq 0$ by

$$(\mathcal{G})_{-p} = \text{completion of} \quad (L^2) \quad \text{with respect to} \quad || \cdot ||_{-p}.$$

It is easy to see that the dual space $(\mathcal{G})_p^*$ of $(\mathcal{G})_p$ is given by $(\mathcal{G})_{-p}$. Let $(\mathcal{G})^*$ denote the dual of (\mathcal{G}) . Then we can easily see that

$$(\mathcal{G})^* = \bigcup_{p \geq 0} (\mathcal{G})_{-p},$$

and introduce on $(\mathcal{G})^*$ the inductive limit topology of the family of spaces $\{(\mathcal{G})_{-p}|p\geq 0\}$. Thus we construct the triple

$$(\mathcal{G}) \subset (L^2) \subset (\mathcal{G})^*$$
.

Also, we can easily see that

$$(\mathcal{G}) \subset (\mathcal{S}) \subset (L^2) \subset (\mathcal{S})^* \subset (\mathcal{G})^*$$
.

EXAMPLE. The Wick exponential

$$\Gamma_f(x) =: e^{\langle x, f \rangle} := \exp\left(\langle x, f \rangle - |f|_0^2/2\right), \quad f \in \mathcal{G}, \ x \in \mathcal{G}'(\mathbb{R})$$

is contained in (\mathcal{G}) . For, the functional Γ_f has the following decomposition

$$\Gamma_f = \sum_{n=0}^{\infty} I_n \left(\frac{1}{n!} f^{\otimes n} \right)$$

as in [6] and for any $p \ge 0$

$$||\Gamma_f||_p^2 = \sum_{n=0}^{\infty} \frac{1}{n!} |B^p f|_0^{2n} = \sum_{n=0}^{\infty} \frac{1}{n!} |f|_p^{2n} = e^{|f|_p^2} < \infty.$$

Since $(\mathcal{G}) \subset (L^2)$, each $\phi \in (\mathcal{G})$ also admits an expression as in (3.1). It is then important to know when $\phi \in (L^2)$ belongs to (\mathcal{G}) . In this connection we have the following analogs of the representation theorems in [6].

THEOREM 3.1. Let $\phi \in (L^2)$ be expressed as

$$\phi = \sum_{n=0}^{\infty} I_n(f_n), \quad f_n \in L_{\mathbb{C}}^{2\widehat{\otimes}n}.$$

Then $\phi \in (\mathcal{G})$ if and only if $f_n \in \mathcal{G}_{\mathbb{C}}^{\widehat{\otimes} n}$ for all $n = 0, 1, \dots, \text{ and } \sum_{n=0}^{\infty} n! |f_n|_p^2 < \infty \text{ for all } p \geq 0.$

THEOREM 3.2. For each $\Phi \in (\mathcal{G})^*$ there exists a unique sequence $\{F_n\}_{n=0}^{\infty}, F_n \in (\mathcal{G}_{\mathbb{C}}^{\otimes n})_{sym}^*$ such that

(2.2)
$$\langle \langle \Phi, \phi \rangle \rangle = \sum_{n=0}^{\infty} n! \langle F_n, f_n \rangle,$$

for all $\phi \in (\mathcal{G})$ with $\phi = \sum_{n=0}^{\infty} I_n(f_n)$ where $f_n \in \mathcal{G}_{\mathbb{C}}^{\widehat{\otimes} n}$ with $\sum_{n=0}^{\infty} n! |f_n|_p^2 < \infty$ for all $p \geq 0$.

Conversely, for a sequence $\{F_n\}_{n=0}^{\infty}$, $F_n \in (\mathcal{G}_{\mathbb{C}}^{\otimes n})_{sym}^*$ with $\sum_{n=0}^{\infty} n! |F_n|_{-p}^2$ $< \infty$ for $p \geq 0$, a generalized functional $\Phi \in (\mathcal{G})^*$ is defined by (2.2).

In this case,

$$||\Phi||_{-p} = \sum_{n=0}^{\infty} n! |F_n|_{-p}^2.$$

By Example in §2 we can define S-transform on $(\mathcal{G})^*$.

DEFINITION 3.3. The S-transform of $\Phi \in (\mathcal{G})^*$ is a function on \mathcal{G} defined by

$$(S\Phi)(f) = \langle \Phi, : \exp\langle \cdot, f \rangle : \rangle, \quad f \in \mathcal{G}$$

Finally, as a generalization of the results in Kuo [8] we can obtain the characterization theorems for white noise hyperfunctions in terms of their S-transform, which is an analog of Paley-Wiener theorem. Also, we can obtain the characterization theorems for positive white noise hyperfunctions, which is an analog of Bochner-Schwartz theorem in Fourier analysis.

ACKNOWLEDGMENT. Eun Gu Lee is supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1996 and Soon-Yeong Chung is partially supported by KOSEF 966-0100-001-2 and GARC-KOSEF.

References

- S.-Y. Chung and D. Kim, Distributions with exponential growth and Bochner-Schwartz theorem for Fourier hyperfunctions, Publ. RIMS, Kyoto Univ. 31 (1995), 829-845.
- [2] J. Chung, S.-Y. Chung and D. Kim, A characterization for Fourier hyperfunctions, Publ. RIMS, Kyoto Univ. 30 (1994), 203-208.
- [3] _____, Positive definite hyperfunctions, Nagoya Math. J. 140 (1995), 139-149.
- [4] S.-Y. Chung, D. Kim and S. K. Kim, Solvability of Mizohata and Lewy operators, J. Fac. Sci. Univ. Tokyo, Sect. IA 40 (1993), 63-71.
- [5] _____, Structure of the extended Fourier hyperfunctions, Japan. J. Math. 19 (1993), 217-226.
- [6] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit, White noise: An infinite dimensional calculus, Kluwer, Dordrecht, 1993.
- [7] K. H. Kim, S.-Y. Chung and D. Kim, Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, Publ. RIMS, Kyoto Univ. 29 (1993), 287-300.
- [8] H.-H. Kuo, Lectures on white noise analysis, Soochow J. Math. 18, 229-300.
- [9] N. Obata, Elements of white noise calculus, Lect. Notes in Math. Vol. 1577, Springer, Berlin-New York, 1995.

Soon-Yeong Chung
Department of Mathematics
Sogang University
Seoul 121–742, Korea
E-mail: sychung@ccs.sogang.ac.kr

Eun Gu Lee Department of Mathematics Dongyang Technical College Seoul 152–714, Korea E-mail: eglee@orient.dytc.ac.kr