# A NOTE ON CONVERTIBLE (0,1) MATRICES II

## SI-JU KIM AND TAEG-YOUNG CHOI

ABSTRACT. Let A be an  $n \times n$  (0,1) matrix. Let f(A) denote the smallest nonnegative integer k such that  $perA[\alpha|\beta] > 0$  and  $A(\alpha|\beta)$  is permutation equivalent to a lower triangular matrix for some  $\alpha$ ,  $\beta \in Q_{k,n}$ . In this case f(A) is called the feedback number of A. In this paper, feedback numbers of some maximal convertible (0,1) matrices are studied.

### 1. Introduction

Let  $A = [a_{ij}]$  be any real matrix of order n. The permanent of A is defined by

$$per A = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)},$$

where  $S_n$  denotes the set of permutations of  $1, 2, 3, \dots, n$ . A nonnegative  $n \times n$  matrix A is called *convertible* if there exists a (1, -1) matrix H such that  $per A = \det(H \circ A)$  where  $H \circ A$  denotes the Hadamard product of H and A. A square convertible (0, 1) matrix is called *maximal* if replacing any zero entry with a 1 results in a non-convertible matrix.

For matrices A, B of the same size, A is said to be permutation equivalent to B, denoted by  $A \sim B$ , if there are permutation matrices P, Q such that PAQ = B. An  $n \times n$  matrix is called partly decomposable if it contains a  $t \times (n-t)$  zero submatrix for some positive integer t. Square matrices which are not partly decomposable are called fully indecomposable.

For positive integers k and n with  $k \leq n$ , let  $Q_{k,n}$  denote the set of all strictly increasing k-sequences from  $\{1, 2, \dots, n\}$ . For  $\alpha \in Q_{k,n}$  and

Received June 6, 1998. Revised September 14, 1998.

<sup>1991</sup> Mathematics Subject Classification: 15C25.

Key words and phrases: convertibility, feedback numbers.

Research partially supported by TGRC-KOSEF.

 $\beta \in Q_{l,n}$ , let  $A(\alpha|\beta)$  denote the  $(n-k) \times (n-l)$  submatrix obtained from an  $n \times n$  matrix A by deleting rows  $\alpha$  and columns  $\beta$  and let  $A[\alpha|\beta]$  denote the matrix complementary to  $A(\alpha|\beta)$  in A. Let A be an  $n \times n$  (0,1) matrix. Let f(A) denote the smallest nonnegative integer k such that  $perA[\alpha|\beta] > 0$  and  $A(\alpha|\beta)$  is permutation equivalent to a lower triangular matrix for some  $\alpha$ ,  $\beta \in Q_{k,n}$ . In this case f(A) is called the feedback number of A. In [3, 4, 5, 6, 7 and 8], the authors investigated some properties of maximal convertible matrices. In this paper, feedback numbers of some maximal convertible (0,1) matrices are investigated. Let  $J_{n \times m}$  denote the  $n \times m$  matrix all of whose entries are 1 and let  $I_n$  be the identity matrix of order n.

### 2. Main results

Before we present our results we restate the following well-known lemmas. All maximal convertible matrices to consider through this paper are fully indecomposable.

LEMMA A [1, PROPOSITION 3.2]. Let A be a maximal convertible matrix of order n whose first column is equal to  $[1,1,0,\cdots,0]^T$ . Then the first two rows of A are identical and the matrix obtained from A by deleting row 1 and column 1 is a maximal convertible matrix.

LEMMA B [3, THEOREM 5]. A square submatrix of a convertible (0,1) matrix is convertible if its complementary submatrix has positive permanent.

Let A be a (0,1) matrix of size n. Then there always exist  $\alpha, \beta \in Q_{n-k,n}$  such that  $perA[\alpha|\beta] \leq 1$  and  $perA(\alpha|\beta) \geq 1$  for some nonnegative integer k. Here we can take  $A[\alpha|\beta]$  as a triangular matrix. It is easy to show that f(A) runs over all integers in  $\{0,1,\cdots,n-1\}$  for an  $n\times n$  (0,1) matrix A. Moreover for an  $n\times n$  (0,1) matrix A, f(A)=n-1 if and only if  $A=J_{n\times n}$ . Let  $\nu(A)$  denote the number of zero entries of a matrix A. Gibson [2] proved that for any  $n\times n$  convertible (0,1) matrix A with perA>0,  $\nu(A)\geq (n^2-3n+2)/2$ . Therefore f(A)< n-1 for any  $n\times n$  convertible (0,1) matrix A. It is hard to classify convertible matrix A with f(A)=k for any possible integer k. However we can study maximal convertible matrix A with f(A)=1,2 and we propose a

problem of feedback numbers of convertible (0,1) matrices.

Let A be a (0,1) matrix of size n. If perA > 0, f(A) = 0 if and only if perA = 1, i.e., A is permutation equivalent to a triangular matrix with 1's in the n main diagonal positions and with 0's above the main diagonal.

Let  $T_n = [t_{ij}]$  denote the  $n \times n$  (0,1) matrix with  $t_{ij} = 0$  if and only if j > i + 1. Then we have the following condition for f(A) = 1.

THEOREM 2.1. Let A be a maximal convertible matrix. Then  $A \sim T_n$  if and only if f(A) = 1.

PROOF. Let  $A \sim T_n$ . Clearly  $f(T_n) = 1$  and hence f(A) = 1.

Conversely let f(A) = 1. Without loss of generality, we may assume that  $A = [a_{ij}]$  is of the form

$$A = \begin{pmatrix} 1 & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & & & & \\ \vdots & \vdots & \ddots & O & & \\ \vdots & \vdots & * & \ddots & \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{pmatrix}.$$

Since A is fully indecomposable,  $a_{1n} = a_{nn} = 1$ . By Lemma A, A(n|n) is fully indecomposable and hence  $a_{1,n-1} = a_{n-1,n-1} = 1$ . Applying Lemma A continuously, we have  $a_{11} = a_{12} = \cdots = a_{1n} = a_{22} = a_{33} = \cdots = a_{nn} = 1$ . Since A is maximal convertible,  $a_{n1} = \cdots = a_{nn} = 1$  by Lemma A. Since A(n|n) is also maximal convertible,  $a_{n-1,1} = \cdots = a_{n-1,n-1} = 1$ . Continuing this process,  $a_{i1} = \cdots = a_{ii} = 1$  for all  $i = 2, 3, \dots, n$ . Hence  $A \sim T_n$ .

Let 
$$T_{n-1} = [\mathbf{t}_1, \dots, \mathbf{t}_{n-1}]$$
. For  $k = 1, 2, \dots, n-1$ , let

$$V_{n,k} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ \mathbf{t}_k & \mathbf{t}_1 & \cdots & \mathbf{t}_{k-1} & \mathbf{t}_k & \mathbf{t}_{k+1} & \cdots & \mathbf{t}_{n-1} \end{pmatrix}.$$

 $V_{n,k}$  is called the k-th column expansion of  $T_{n-1}$ . Let the  $n \times n$  matrix  $W_{n,k}^T$  be the k-th column expansion of  $T_{n-1}^T$ .  $W_{n,k}$  is called the k-th row expansion of  $T_{n-1}$ . A matrix is called an *expansion* of a (0,1) matrix A

if it is a row expansion or a column expansion of A. Then  $V_{n,k}$  and  $W_{n,k}$  are maximal convertible for  $n \geq 3$  and for  $k = 1, 2, \dots, n-1$  ([3]). Note that

$$f(V_{n,k}) = \left\{egin{array}{ll} 1, & ext{for } n=3 ext{ or } k=1,2 \ 2, & ext{for } n\geq 4 ext{ and } k=3,\cdots,n-1 \end{array}
ight.$$

and

$$f(W_{n,k}) = \begin{cases} 1, & \text{for } n = 3 \text{ or } k = n - 2, n - 1 \\ 2, & \text{for } n \ge 4 \text{ and } k = 1, 2, \cdots, n - 3. \end{cases}$$

Since an  $n \times n$  maximal convertible matrix containing  $T_{n-1}$  as a submatrix is an expansion of  $T_{n-1}$  [7], we have following Corollary.

COROLLARY 2.2. Let A be an  $n \times n(n \ge 4)$  maximal convertible matrix containing a maximal convertible matrix B of size n-1 with f(B)=1. Then f(A)=2 if and only if  $A \sim V_{n,k}$  for some  $k \in \{3, \dots, n-1\}$  or  $A \sim W_{n,k}$  for some  $k \in \{1, 2, \dots, n-3\}$ .

An  $n \times n$  nonnegative matrix A is doubly indecomposable if  $per A(\alpha|\beta) > 0$  for all  $\alpha$ ,  $\beta \in Q_{2,n}$ . Notice that doubly indecomposability implies fully indecomposability. From the definition of the doubly indecomposability and Lemma B we have

LEMMA 2.3. Let A be a doubly indecomposable convertible (0,1) matrix. Then A has no  $J_{2\times 3}$  or  $J_{3\times 2}$  as submatrices.

LEMMA 2.4. Let A be a doubly indecomposable maximal convertible matrix. Then every row (column) of A has at least three 1's.

PROOF. Let A be a doubly indecomposable maximal convertible matrix. If A has a row with exactly two 1's, then A has two identical columns (cf. [1]). Since A is fully indecomposable, A contains a  $J_{2\times 3}$  as a submatrix. This is contradiction to Lemma 2.2. Similarly the result holds for columns.

Let  $P_n = [p_{ij}]$  be the permutation matrix of order n such that  $p_{ij} = 1$  if and only if  $(i, j) \in \{(1, 2), (2, 3), \dots, (n - 1, n), (n, 1)\}$ . Then

$$D_n = \begin{pmatrix} 1 & & & \\ \vdots & & I_{n-1} + P_{n-1} & \\ 1 & & & \\ 0 & 1 & \cdots & 1 \end{pmatrix}$$

is a doubly indecomposable maximal convertible matrix ([8]).

THEOREM 2.5. Let A be a doubly indecomposable maximal convertible matrix. If f(A) = 2 and A has a row with n-1 nonzero entries, then  $A \sim D_n$ .

PROOF. Without loss of generality, we may assume that  $A = [a_{ij}]$  is of the form

By Lemma 2.3,

$$A = \begin{pmatrix} 1 & 1 & 1 & & & & \\ & & & \ddots & O & \\ & * & & * & \ddots & \\ & & & & & 1 \\ 1 & p & & * & & 1 \\ q & 1 & & * & & 1 \end{pmatrix}.$$

By Lemma 2.2, we have p = q = 0, p = 1 and q = 0, or p = 0 and q = 1. Case 1. p = 1 and q = 0.

Since one of the last three rows of A has n-1 nonzero entries by hypothesis, permuting first two columns and last three columns properly, we may assume that A is one of the forms

In the first case,  $a_{n-1,3} = a_{n-1,4} = \cdots = a_{n-1,n-1} = 0$  by Lemma 2.2. Also  $a_{n-2,n-1} = 1$  by Lemma 2.3. Then  $a_{n-2,2} = \cdots = a_{n-2,n-2} = 0$  by Lemma 2.2. Also  $a_{n-2,1} = a_{n-3,n-2} = 1$  by Lemma 2.3. Continuing this process, we have  $a_{i2} = \cdots = a_{ii} = 0$  and  $a_{i1} = a_{i,n-1} = 1$  for all  $i = 2, 3, \dots, n-2$ . Hence  $A \sim D_n$ . Consider the second case. If  $a_{n-1,3} \neq 0$ , then  $A[1, n-1|1, 2, 3] = J_{2\times 3}$ . Hence  $a_{n-1,3} = 0$  and  $a_{n-1,1} = a_{n-1,2} = a_{n-1,4} = \cdots = a_{n-1,n} = 1$ . By the similar method above, we have

$$A = \begin{pmatrix} 1 & 1 & 1 & & & & & \\ 1 & 0 & 1 & 1 & & & O & & \\ 0 & 0 & 1 & 1 & \ddots & & & & \\ 0 & 0 & 1 & 0 & \ddots & \ddots & & & \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \\ 0 & 0 & 1 & 0 & \cdots & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & \cdots & \cdots & 1 & 1 \\ 0 & 1 & 1 & 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \sim D_n.$$

Similarly we have the same result for p = 0 and q = 1.

Case 2. p = q = 0.

Since one of (n-2)th, (n-1)th or nth rows of A should have n-1 nonzero entries, permuting the first three columns and last three rows, we can return to the case 1.

Notice that for A to have a row with n-1 nonzero entries is necessary in the Theorem 2.4. For example, let

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Then A is a doubly indecomposable maximal convertible matrix ([1]) and f(A) = 2, but

$$A \not\sim D_6$$
.

Let  $U_2 = T_2$  and let

$$U_n = \begin{pmatrix} 1 & \mathbf{a} \\ \mathbf{b} & U_{n-1} \end{pmatrix}$$

for  $n \geq 3$ , where

$$\mathbf{a} = \left(1, \frac{1+(-1)^n}{2}, 0, \cdots, 0\right), \ \mathbf{b} = \left(1, \frac{1-(-1)^n}{2}, 0, \cdots, 0\right)^T.$$

Then  $U_n$  is a maximal convertible matrix ([3]). It would be of interest to find the largest feedback number of  $n \times n$  convertible (0,1) matrices. We propose a problem.

PROBLEM 2.6. Is  $f(A) \leq 6$  for any convertible (0,1) matrix A? Does the equality hold if and only if  $A \sim U_n$  for some n?

At present, we cannot solve the problem. But we can show that  $f(U_n) \leq 6$  for all  $n \geq 2$ .

LEMMA 2.7. An  $n \times n$  matrix A is permutation equivalent to a triangular matrix if and only if there exist positive integers i, j, k, l such that A(i, k|j, l) is permutation equivalent to a triangular matrix and all entries except  $a_{il}$  and  $a_{kj}$  in the i-th row and j-th column of A are zero.

PROOF. Necessity part is trivial. Conversely let  $A = [a_{ij}]$ . Without loss of generality, we may assume that A(1,2|1,2) is an lower triangular matrix and  $a_{12} = \cdots = a_{1n} = a_{21} = a_{23} = a_{24} = \cdots = a_{2n} = 0$ . Permuting lines of A, we know that A is permutation equivalent to a lower triangular matrix.

THEOREM 2.8.  $f(U_n) \leq 6$  for all  $n \geq 2$ .

PROOF. Let  $\alpha=(n-11,n-9,n-8,n-5,n-3,n-2)$  and  $\beta=(n-11,n-8,n-7,n-5,n-2,n-1)$ . Then  $perU_n[\alpha|\beta]>0$ . It is easy to show that  $U_n(n-11,n-10,n-9,n-8,n-6,n-5,n-4,n-3,n-2,n|n-11,n-10,n-8,n-7,n-6,n-5,n-4,n-2,n-1,n)$  is similar to a lower triangular matrix. Using Lemma 2.5, we can show that  $U_n(\alpha|\beta)$  is permutation equivalent to a lower triangular matrix. Hence  $f(U_n)\leq 6$ .

ACKNOWLEDGEMENTS. I would like to thank the refree for some kind and valuable comments.

### References

- [1] R. A. Brualdi and B. L. Shader, On sign-nonsingular matrices and the conversion of the permanent into the determinant, Applied Geometry and Discrete Mathematics 4 (1991), 117-134.
- [2] P. M. Gibson, Conversion of the permanent into the determinant, Proc. Amer. Math. Soc. 27 (1971), 471-476.
- [3] S. G. Hwang and S. J. Kim, On convertible nonnegative matrices, Lin. Multilin. Alg. 32 (1992), 311-318.
- [4] S. G. Hwang, S. J. Kim and S. Z. Song, On maximal convertible matrices, Lin. Multilin. Alg. 38 (1995), 171-176.
- [5] \_\_\_\_\_, On convertible complex matrices, Lin. Alg. Appl. 233 (1996), 167-173.
- [6] S. J. Kim, Some remarks on extremal convertible matrices, Bull. Korean Math. Soc. 29 (1992), no. 2, 315-323.
- [7] S. G. Hwang, S. J. Kim and S. Z. Song, A note on extremal convertible matrices, Bull. Korean Math. Soc. 33 (1996), no. 2, 295-302.
- [8] S. J. Kim and T. Y. Choi, A note on convertible (0,1) matrices, Comm. Korean Math. Soc. 12 (1997), no. 4, 841-849.

Department of Mathematics Education Andong University Andong 760-749, Korea E-mail: sjkim@anu.andong.ac.kr