MODULES OF QUOTIENTS OVER COMMUTATIVE RINGS

JAEGOOK LEE AND SEOG-HOON RIM

ABSTRACT. In this paper, we give an affirmative answer to the question raised in [5]; whether $\mathcal{L}((\mathcal{P}))$ is principal or not. Using this fact, we try to give concrete form of module of quotient with respect to a torsion theory determined by $\mathcal{L}((\mathcal{P}))$.

In [3] Goldman introduced the notion of modules of quotients of a ring with respect to an idempotent kernel functor, which is a generalization of the localization of a module with respect to a multiplicative subset of a commutative ring.

A functor σ on R-mod, the category of R-modules, is called an *idem*potent kernel functor if the following properties hold:

- (1) For every R-module M, $\sigma(M)$ is a submodule of M.
- (2) If $f: M' \longrightarrow M$ is a homomorphism, then $f(\sigma(M')) \subset \sigma(M)$ and $\sigma(f)$ is a restriction of f to $\sigma(M')$.
- (3) If M' is a submodule of M, then $\sigma(M') = \sigma(M) \cap M'$.
- (4) $\sigma(M/\sigma(M)) = 0$.

We say M is a σ -torsion (resp. σ -torsion free) R-module if $\sigma(M) = M$ (resp. $\sigma(M) = 0$).

And we remark that σ is an idempotent kernel functor if and only if the following holds:

If $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ is an exact sequence such that M' and M'' are σ -torsion R-modules, then M is also a σ -torsion R-module.

A nonempty set \mathcal{L} of ideals of a ring R is called a *Gabriel filter* if and only if the following two conditions are satisfied:

(1) If $I \in \mathcal{L}$ and $a \in R$, then $(I : a) \in \mathcal{L}$.

Received January 15, 1997. Revised December 14, 1998.

1991 Mathematics Subject Classification: 16D60, 16D50.

Key words and phrases: Gabriel filter, modules of quotients, principal filter.

This paper was supported in part by BSRI 96-1402 and TGRC-KOSEF.

(2) If I is a left ideal of R for which there exists an element H of \mathcal{L} satisfying $(I:a) \in \mathcal{L}$ for all $a \in H$, then $I \in \mathcal{L}$.

If \mathcal{L} is a Gabriel filter of ideals of R, then the following conditions are satisfied:

- (1) If $I \in \mathcal{L}$ and if H is an ideal of R containing I, then $H \in \mathcal{L}$.
- (2) If $I, H \in \mathcal{L}$, then $I \cap H \in \mathcal{L}$.
- (3) If $I, H \in \mathcal{L}$, then $IH \in \mathcal{L}$.

All rings in this paper are commutative with identity, and all modules are unital. Specially for a given set of prime ideals \mathcal{P} of a ring R, we consider the corresponding Gabriel filter $\mathcal{L}((\mathcal{P}))$, concise definition shall come latter. And we will give an affirmative answer to the question, W hether $\mathcal{L}((\mathcal{P}))$ is principal or not." which was raised in the remark of [5].

Let R be a ring and P be a prime ideal of R. Then S = R - P is a multiplicatively closed subset of R. The ring of quotients $S^{-1}R$ is called the *localization of* R at P and is denoted by R_P . If I is an ideal in R, then the ideal $S^{-1}I$ in R_P is denoted by I_P . First we consider a filter determined by a set of prime ideals of R.

LEMMA 1 [5]. For each set P of prime ideals, the set

$$\mathcal{L}(\mathcal{P}) = \{ I \triangleleft R \, | \, I_P = R_P \quad \text{for all } P \in \mathcal{P} \}$$

is a Gabriel filter.

Following [1] or [2], we say that a Gabriel filter \mathcal{L} is principal filter if each ideal I of \mathcal{L} contains a principal ideal that is in \mathcal{L} , and the intersection of principal filter is again a Gabriel filter and called a primal filter.

PROPOSITION 2 [7, Proposition 15.1]. There exists a one-to-one correspondence between principal filters on R and subsets S on R satisfying the followings:

- (1) $1 \in S$.
- (2) $s_1, s_2 \in S \text{ implies } s_1 s_2 \in S.$
- (3) If $r \in R$ and $s \in S$, then there exist $r' \in R$ and $s' \in S$ such that r's = rs'.
- (4) If $a, b \in R$ and $ab \in S$, then $a \in S$.

Usually S is called a saturated set if S satisfies the condition (4).

For any R-module M and a prime ideal P of R, let

$$M_{(P)} = \{m/s \mid s \text{ is a regular element not in } P \text{ and } m \in M\}.$$

Then $R_{(P)}$ is a localization of R and $M_{(P)}$ is an $R_{(P)}$ -module. Here a regular element means a non-zero divisor in R.

As a special case of Lemma 1, we can get the following result which appear in [5].

LEMMA 3 [5, Lemma 2]. Let \mathcal{P} be a set of prime ideals of R and let

$$\mathcal{L}((\mathcal{P})) = \{ I \triangleleft R \, | \, I_{(P)} = R_{(P)} \text{ for all } P \in \mathcal{P} \}.$$

Then $\mathcal{L}((\mathcal{P}))$ is a Gabriel filter.

For convenience, we adopt the following notation in this section. $C(P) = \{r \in R \mid r + P \text{ is a regular element in } R/P\}.$

If P is a set of prime ideals P in R, then we denote

$$S(\mathcal{P}) = R - \bigcap_{P \in \mathcal{P}} P$$
 and $C(\mathcal{P}) = \bigcap_{P \in \mathcal{P}} C(P)$.

Remark 4. We list some properties on $S(\mathcal{P})$ and $C(\mathcal{P})$:

- (1) If R is an integral domain, then S(P) = C(P) for one prime ideal P in R.
- (2) $C(\mathcal{P}) \subset S(\mathcal{P})$ where \mathcal{P} is a set of prime ideals in R.
- (3) $C(\mathcal{P})$ is a saturated set.
- (4) In general, $S(\mathcal{P})$ is not equal $C(\mathcal{P})$.

PROOF. The statements (1), (2) and (3) are clear. To show (4), we give counter example. Let $R = \mathbb{Z}$ and $\mathcal{P}_n = \{2\mathbb{Z}, 3\mathbb{Z}, 5\mathbb{Z}, \dots, k_n\mathbb{Z}\}$ where k_n is n-th prime in \mathbb{Z} . Then $S(\mathcal{P}_n) = \mathbb{Z} - \bigcap_{i=1}^n k_i\mathbb{Z}$ where k_i is i-th prime in \mathbb{Z} . Since $30 \notin 7\mathbb{Z}$, $30 = 2 \cdot 3 \cdot 5 \in S(\mathcal{P}_4)$. But $30 \notin \bigcap_{i=1}^4 C(k_i\mathbb{Z})$. So, (4) holds.

Now we consider following two sets of ideals in R, which appear in [5].

$$\mathcal{L}(C(\mathcal{P})) = \{ I \triangleleft R \mid C(P)^{-1}R = C(P)^{-1}I \text{ for each } P \in \mathcal{P} \}$$
$$= \{ I \triangleleft R \mid I_{(P)} = R_{(P)} \text{ for each } P \in \mathcal{P} \}$$

$$\mathcal{L}(S(\mathcal{P})) = \{ I \triangleleft R \mid S(P)^{-1}R = S(P)^{-1}I \text{ for each } P \in \mathcal{P} \}.$$

$$= \{ I \triangleleft R \mid I_P = R_P \text{ for each } P \in \mathcal{P} \}.$$

Now we prove the main theorem:

THEOREM 5. Let \mathcal{P} be a set of prime ideals of R, then $\mathcal{L}(C(\mathcal{P}))$ is a principal filter. In particular, $\mathcal{L}(C(P))$ is a principal filter for a prime ideal P of R.

PROOF. We can see that $C(\mathcal{P})$ is a multiplicatively closed set. Since R is a commutative ring, $C(\mathcal{P})$ is an Ore set. By Remark 4, $C(\mathcal{P})$ is a saturated set. Thus by Proposition 2, $\mathcal{L}(C(\mathcal{P}))$ is a principal filter.

Moreover, we can see that this Gabriel filter is perfect. Let's denote $C(\mathcal{P})=C.$ Then by [7], $C^{-1}M\cong C^{-1}R\bigotimes_R M$ for each left R-module M. So, $\mathcal{L}(C(\mathcal{P}))$ is a perfect.

The following question was raised in [5]; whether $\mathcal{L}(S(\mathcal{P}))$ is principal or not. Since R is a commutative ring, $S(\mathcal{P})$ is an Ore set. But $S(\mathcal{P})$ is not a saturated set in general (cf. [10]), thus we can say that $\mathcal{L}(S(\mathcal{P}))$ need not be a principal filter.

Let M be an arbitrary R-module. Let $\mathcal L$ be a Gabriel filter and σ be the corresponding idempotent kernel functor. By [7], we can define $M_{\mathcal{L}} = \lim Hom_{R}(I, M/\sigma(M))$ where $I \in \mathcal{L}$.

One verifies that the ring structure of $R_{\mathcal{L}}$ and the module structure of $M_{\mathcal{L}}$ are given by the following pairing $M_{\mathcal{L}} \times R_{\mathcal{L}} \longrightarrow M_{\mathcal{L}}$:

Let
$$x \in M_{\mathcal{L}}$$
 be represented by $\xi : J \longrightarrow M/\sigma(M)$ where $J \in \mathcal{L}$, $a \in R_{\mathcal{L}}$ be represented by $\alpha : I \longrightarrow R/\sigma(R)$ where $I \in \mathcal{L}$.

 ξ induces $J/\sigma(J) \to M/\sigma(M)$ and we have $J/\sigma(J) \hookrightarrow R/\sigma(R)$ by left exactness of σ ; $xa \in M_{\mathcal{L}}$ is represented by

$$\alpha^{-1}(J/\sigma(J)) \longrightarrow J/\sigma(J) \longrightarrow M/\sigma(M).$$

and

PROPOSITION 6 [7, Proposition 15.2]. If \mathcal{L} is a principal filter on R, S is the subset of R corresponding to \mathcal{L} and M is any R-module, then

$$M_{\mathcal{L}} = \{(s, m) \in S \times M \mid as = 0 \text{ in } R \text{ implies } tam = 0 \}$$
 for some $t \in S\} / \sim$

where \sim is the equivalence relation given by $(s_1, m_1) \sim (s_2, m_2)$ if there exist $r_1, r_2 \in R$ such that $r_1s_1 = r_2s_2 \in S$ and $r_1m_1 = r_2m_2$.

And define addition and scalar multiplication by

$$[(s_1, m_1)] + [(s_2, m_2)] = [(s_1s_2, s_1m_2 + s_2m_1)]$$

 $r[(s_1, m_1)] = [(s_1, rm_1)]$

for any $r \in R$, $s_1, s_2 \in S$ and $m_1, m_2 \in M$. Then $M_{\mathcal{L}}$ is an R-module. Since $\mathcal{L}(C(\mathcal{P}))$ is a principal filter, as a special case of Proposition 7, $M_{\mathcal{L}(C(\mathcal{P}))} = \{(s,m) \in C(\mathcal{P}) \times M \mid as = 0 \text{ in } R \text{ implies } tam = 0 \text{ for some } t \in C(\mathcal{P})\}/\sim$. Hence, we may describe the modules of quotients in a rather explicit way in following theorem. This can be regarded as a generalization form of theorem in [5].

THEOREM 7. Let \mathcal{P} be a set of prime ideals of R and M be any R-module. Then

$$\bigcap_{P\in\mathcal{P}}M_{(P)}\cong M_{\mathcal{L}(C(\mathcal{P}))}.$$

PROOF. Let $z = m/s \in \bigcap_{P \in \mathcal{P}} M_{(P)}$. Then $m/s \in M_{(P)}$ for all $P \in \mathcal{P}$ and $s \in C(P)$. Define a map

$$\alpha:\bigcap_{P\in\mathcal{P}}M_{(P)}\longrightarrow M_{\mathcal{L}(C(\mathcal{P}))},$$

by $\alpha(z)=[(s,m)]$, where $z\in\bigcap_{P\in\mathcal{P}}M_{(P)}$. Suppose that $m_1/s_1=m_2/m_2$ for any $m_1,m_2\in M,\ s_1,s_2\in C(P)$. Take $r_1=s_2$ and $r_2=s_1$. Then $(s_1,m_1)\sim (s_2,m_2)$, which implies $\alpha(m_1/s_1)=\alpha(m_2/s_2)$. So, α is well-defined. By the definition of scalar multiplication, α is an R-homomorphism.

Conversely, we define a map

$$\beta: M_{\mathcal{L}(C(\mathcal{P}))} \longrightarrow \bigcap_{P \in \mathcal{P}} M_{(P)}$$

by $\beta[(s,m)] = m/s$ where $[(s,m)] \in M_{\mathcal{L}(C(\mathcal{P}))}$. It is clear that β is well-defined and easily check that β is an R-homomorphism. Moreover, $\alpha \circ \beta$ is the identity map on $M_{\mathcal{L}(C(\mathcal{P}))}$ and $\beta \circ \alpha$ is the identity map on $\bigcap_{P\in\mathcal{P}} M_{(P)}$.

By a torsion theory τ we mean a pair of classes \mathcal{T} and \mathcal{F} of modules that satisfy the following axioms:

- (1) $\mathcal{T} \cap \mathcal{F} = \{0\}.$
- (2) If $M \in \mathcal{T}$ and $f: M \longrightarrow N$ is an epimorphism, then $N \in \mathcal{T}$.
- (3) If $M \in \mathcal{T}$ and $N \subseteq M$, then $N \in \mathcal{T}$.
- (4) If T_a ∈ T(a ∈ A: submodule of M), then ⊕_{a∈A} T_a ∈ T.
 (5) If 0 → T₁ → T → T₂ → 0 is exact and T₁, T₂ ∈ T, then
- (6) $F \in \mathcal{F}$ if and only if Hom(T, F) = 0 for all $T \in \mathcal{T}$.

(In many places in the literature, τ is called a hereditary torsion theory if it satisfies this definition). The class \mathcal{T} is called the τ -torsion class, and the class \mathcal{F} is called the τ -torsion free class. It is clear that τ determines a unique Gabriel filter. (cf. [2] or [8])

It is well known that there are one to one correspondences among Idempotent kernel functors, Gabriel filters and Torsion theories. Now we consider a ring of quotients which is determined by prime ideals.

For any R-module M, the module of quotients of M with respect to a torsion theory τ , denoted by $Q_{\tau}(M)$, is a faithfully τ -injective module containing $M/\tau(M)$ as a submodule unique up to isomorphism. Actually we can calculate

$$Q_{\tau}(M) = \{ m \in E(M) \mid Im \subset M \text{ for some } I \in \mathcal{L} \}$$
 where $E(M)$ is the injective hull of M . (cf. [2] or [7])

For the given Gabriel filter $\mathcal{L}(C(\mathcal{P}))$, we can define a torsion theory τ on R-mod. The corresponding torsion class \mathcal{T} is given by

$$\{\ M\in R-\ \mathrm{mod}\ \mid\ (0:m)\in\mathcal{L}\ \ ext{for each}\ \ m\in M\ \}$$
 where $(0:m)=\{\ r\in R\ \mid\ rm=0\ \}.$

PROPOSITION 8 [5, Theorem]. Let \mathcal{P} be a set of prime ideals of R and τ be the torsion theory determined by $\mathcal{L}(C(\mathcal{P}))$. Then for any τ -torsion free R-module M,

$$Q_{\tau}(M) \cong \bigcap_{P \in \mathcal{P}} M_{(P)}$$
.

COROLLARY 9. Let \mathcal{P} be a set of prime ideals of R and τ be the torsion theory determined by $\mathcal{L}(C(\mathcal{P}))$. Then for any τ -torsion free R-module M,

$$M_{\mathcal{L}(C(\mathcal{P}))}\cong Q_{\tau}(M)\,,$$
 i.e., $Q_{\tau}(M)=\{(s,m)\in C(\mathcal{P})\times M\mid as=0 \text{ in }R \text{ implies }tam=0 \text{ for some }t\in C(\mathcal{P})\}/\sim.$

References

- M. Beattie and M. Orzech, Prime ideals and Finiteness conditions for Gabriel Topologies over Commutative Rings, Rocky Mountain J. Math. 22 (1992), 423-440.
- [2] J. Golan, *Torsion Theories*, Pitman Monographs and Surveys in Pure and Applied Mathematics **29** (1986), John Wiley and Sons Inc., New York.
- [3] O. Goldman, Rings and Modules of Quotients, J. Algebra 13 (1969), 10-27.
- [4] J. Han and H. Lee, Torsion theory and Local Cohomology, Comm. Korean Math. Soc. 4 (1989), 279-289.
- [5] H. Lee, Modules of Quotients over Commutative Rings, Comm. Korean Math. Soc. 9 (1994), 797-801.
- [6] J. Rotman, An Introduction To Homological Algebra, Academic Press. Inc. (1979), New York.
- [7] B. Stenström, Rings and Modules of Quotients, Lecture Notes in Mathematics 237 (1971), Springer-Verlag, Berlin.
- [8] _____, Rings of Quotients (1975), Springer-Verlag, Berlin.
- [9] F. Van Oystaeyan and A. Verschoren, Relative Invariants of Rings, Monographs in pure and applied Mathematics 79 (1984), Marcel Dekker Inc., New York.
- [10] I. Kaplansky, Commutative Rings (1974), The University of Chicago Press, Chicago and London.

Jaegook Lee and Seog-Hoon Rim Department of Mathematics Graduate School and Teachers College Kyungpook National University Taegu 702-701, Korea