UV-경화 폴리우레탄 아크릴레이트의 제조와 특성(II) - 희석제의 종류와 함량의 영향 -

Preparation and Properties of UV-Curable Polyurethane Acrylate (II) -Effect of Types and Concentration of Reactive Diluents-

  • 이동진 (부산대학교 공과대학 섬유공학과) ;
  • 최준영 (부산대학교 공과대학 섬유공학과) ;
  • 김한도 (부산대학교 공과대학 섬유공학과)
  • 발행 : 1999.11.01

초록

UV-Curable polyurethane acrylates were prepared from urethane-acrylate prepolymer, three type of reactive diluents, and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184) as a photoinitiator. The urethane-acrylate prepolymer, which influenced toughness, abrasion resistance, and flexibility of the resulting polymer, was synthesized from 4,4'-diphenylmethane diisocyanate (MDI), poly(tetramethylne oxide) glycol (PTMG, $M_{w}$ 1,000), 1,6-hexanediol (HD), and 2-hydroxyethyl acrylate (HEA) using dibutyltin dilaurate as a catalyst. The three types of reactive diluents having mono-, di-, and trifunctionality are acrylate monomers with double bond functionalities such as phenoxyethyl acrylate (PEA), hexanediol diacrylate (HDDA), and trimethylopropane triacrylate (TMPTA), respctively, UV-Cured films of polyurethane acrylates were obtained by curing with a medium-pressure mercury lamp (80 W/cm; ${\lambda}_{max}$=365 nm). In this work, the effects of the chemical structure and the reactive diluent composition on mechanical and dynamic thermal mechanical properties of UV-cured polyurethane acrylates were studied. The structure and properties of the films obtained from the UV photopolymerization of urethane-acrylate prepolymer were investigated by FT-IR spectroscopy, dynamic mechanical measurement, and tensile testing.

키워드

참고문헌

  1. Int. J. Adhesion Adhesives v.11 A. Priola;G. Gozzelino;F. Ferrero
  2. UV-and EB-Curing Formulation of Printing Inks, Coatings, and Paints R. Holman;P. Oldring
  3. Technical Paper FC86-859 Dearborn Society of Manufacturing Engineers C. B. Thanawalla
  4. Advance in Urethane Science and Technology v.7 A. Lilaonitkul;S. L. Cooper;K. C. Frisch(ed.);S. L. Reegerp(ed.)
  5. Polym. Plast. Tech. Eng. v.17 no.83 C. Bluestein
  6. Polym. Maler. Sci. Eng. v.60 J. A. McConnel
  7. J. Appl. Polym. Sci. v.49 X. Yu;B. P. Grady;R. S. Reiner;S. L. Cooper
  8. Enr. Pat., 91104304.0 H. Schuermann;E. Cramer;F. Reintjes
  9. J. Maternal Sci. v.17 M. Koshiba;K. K. S. Hwang;S. K. Foley;D. J. Yarusso;S. L. Copper
  10. J. Appl. Polym. Sci. v.46 H. D. Kim;S. G. Kang;C. S. Ha
  11. J. Appl. Polym. Sci v.60 B. K. Kim;K. H. Lee;H. D. Kim
  12. Polymer(Korea) v.18 H. D. Kim;D. J. Lee;J. H. Choi;C. C. Park
  13. J. Korean Fiber Soc. v.31 D. J. Lee;J. H. Choi;H. D. Kim;S. M. Park;H. H. Cho;K. H. Kim
  14. J. Korean Fiber Soc. v.28 S. G. Kang;C. S. Ha;H. D. Kim
  15. J. Korean Fiber Soc. v.34 T. W. Kim;J. H. Hur;E. Y. Kim;H. D. Kim;J. S. Kim;J. H. Kim;M. W. Park
  16. J. Korean Fiber Soc. v.35 H.-D. Kim;D.-J. Lee
  17. J. Korean Soc. Dyers Finishers J.-Y. Choi;D.-J. Lee;H.-D. Kim
  18. J. Appl. Ploym. Sci. v.23 W. Oraby;W. K. Walsh
  19. J. Appl. Polym. Sci. v.60 B. Nabeth;J. F. Gerard;J. P. Pascault
  20. Polyurethanes in Biomedical Applications N. M. K Lamba;K. A. Woodhouse;S. L. Cooper
  21. J. Polym. Sci., Part A: Polym. Chem. v.34 B. K. Kim;K. H. Lee;N. J. Jo