East Asian Math J. 15(1999), No. 1, pp. 147-151

APPROXIMATION THEOREM FOR HOLOMORPHIC FUNCTIONS IN FINITE AND INFINITE DIMENSIONAL COMPLEX SPACES

Kwang Ho Shon, Chul Joong Kang and Su Mi Kwon

1. Introduction

We will eventually prove that every $f \in \mathcal{H}(D)$ can be approximated uniformly on compacta by polynomials in the functions f_1, f_2, \dots, f_n . For the present we note some interesting properties of Oka-Weil domains. For the Banach space, J. Mujica [4] extended the Oka-Weil approximation theorem, by the technique of polynomially convex set. In this paper, we obtain some properties of a sequence of polynomials which converges to a function uniformly on a polynomially convex compact subset of complex Banach spaces The technique of this study is based on J. Mujica [4].

2. Approximation theorem

A variety V in a domain $D \subset \mathbb{C}^n$ is globally presented in D if there exist functions $f_1, f_2, \dots, f_k \in \mathcal{H}(D)$ such that $V = \{z \in D :$ $f_1(z) = \dots = f_k(z) = 0\}$ A variety $V \subset \mathbb{C}^n$ is regularly imbedded at a point $z_0 \in V$ if there exist holomorphic functions f_1, f_2, \dots, f_n near z_0 such that f_1, f_2, \dots, f_n form a system of local coordinates near z_0 and $V = \{z : f_1(z) = \dots = f_k(z) = 0\}$ near z_0 . If $V \subset \mathbb{C}^n$ is regularly imbedded, then all systems of defining functions f_1, f_2, \dots, f_k such that $V = \{z : f_1(z) = \dots = f_k(z) = 0\}$ locally have Jacobian of

Received November 22, 1998. Revised January 10, 1999

¹⁹⁹¹ Mathematics Subject Classification. 32E20, 32E30.

Key words and phrases: Approximation theorem, polynomially convex set, Oka-Weil theorem, Stein manifold

The Present Studies were Supported by the Matching Fund Programs of Research Institute for Basic Sciences, Pusan National University, Korea, Project No RIBS-PNU-99-102.

constant rank on connected components of V. An Oka-Weil manifold is the only variety which is globally presented and regularly imbedded in a polydisc. A regularly imbedded variety $V \subset \mathbb{C}^n$ has a natural complex manifold structure,

THEOREM 2.1(OKA-WEIL APPROXIMATION THEOREM [3]). If $D \subset \mathbb{C}^n$ is a bounded analytic polyhedron determined by functions $f_1, f_2, \cdots, f_m \in \mathcal{H}(\mathbb{C}^n)$ then any function $f \in \mathcal{H}(D)$ can be approximated uniformly on compate by polynomials in the functions f_1, f_2, \cdots, f_m and the variables z_1, z_2, \cdots, z_n .

LEMMA 2.2. Let V be a regularly imbedded variety in the unit open polydisc $P \subset \mathbb{C}^n$ and let f be a holomorphic function on V. Then on any open polydisc P^* with $\overline{P}^* \subset P$ there exists a function $\tilde{f} \in \mathcal{H}(P^*)$ such that $f(z) = \tilde{f}(z)$ for $z \in V \cap P^*$.

DEFINITION 2.3. Let M be an n-dimensional complex (analytic) manifold An open set $W \subset M$ is an Oka-Weil domain, if there exists a relatively compact open neighborhood U and $f_1, f_2, \dots, f_m \in \mathcal{H}(M)$ such that

(1) $W \subset \overline{W} \subset U$.

(2) $W = U \cap \{z \in M : |f_j(z)| < 1, 1 \le j \le m\}.$

(3) $F = (f_1, f_2, \dots, f_m)$ is an injective non-singular mapping of W into the unit polydisc $P \subset \mathbb{C}^n$.

If W is an Oka-Weil domain in M, then W is Stein. If M is a Stein manifold, there exists a sequence of Oka-Weil domains $\{W_k\}$ such that $W_k \nearrow M$ and \overline{W}_k is compact and $\overline{W}_k \subset W_{k+1}$ for $k = 1, 2, \cdots$.

PROPOSITION 2.4([2]). Let M be a Stein manifold and K be a holomorphically convex compact subset of M. If U is any neighborhood of K, there is an Oka-Weil domain W, defined by global functions, such that $K \subset W \subset \overline{W} \subset U$.

Let K be a compact subset of M and A be an algebra of holomorphic functions on M. The A-convex hull of K in M is defined to be the set

$$K(\mathcal{A}, M) = \{ z \in M : \mathcal{H}(z) \} \le ||f||_{\mathcal{K}} \text{ for all } f \in \mathcal{A} \}.$$

We say that K is A - convex in M if K = K(A, M).

THEOREM 2.5. Let M be a complex manifold, K be a compact subset of M and $\mathcal{A} \subset \mathcal{H}(M)$ be any subalgebra such that

(1) \mathcal{A} gives a local coordinates system at each point in M.

(2) \mathcal{A} separates points in M.

(3) K is \mathcal{A} -convex.

Then any holomorphic function f in a neighborhood of K is approximated uniformly on K by a sequence of functions in \mathcal{A} .

Proof. Let U be a relatively compact open neighborhood of K. By Proposition 2.4, we have an Oka-Weil domain

$$W = \{z \in U : |f_i(z)| < 1, i = 1, 2, \cdots, m\}$$

with $f_i \in \mathcal{A}, i = 1, 2, \cdots, m$, such that $K \subset W \subset \overline{W} \subset U$. Then $\psi = (f_1, f_2, \cdots, f_m)$ maps W biholomorphically to the closed submanifold $\widetilde{W} \subset P$ and \widetilde{W} -is regularly imbedded, where P is the unit polydisc in \mathbb{C}^m . Since $\psi(K)$ is compact in P, there exists a polydisc P^* such that $\psi(K) \subset P^* \subset \overline{P}^* \subset P$. If $f \in \mathcal{H}(U)$ then $f \circ \psi^{-1}$ is holomorphic on \widetilde{W} . From Lemma 2.2, we have a function $\widetilde{f} \in \mathcal{H}(P^*)$ such that $\widetilde{f} = f \circ \psi^{-1}$ on $\widetilde{W} \cap P^*$. Now \widetilde{f} is uniformly approximated on compacta in P^* by polynomials in z_1, z_2, \cdots, z_m . Therefore f is approximated on K by the same polynomials in f_1, f_2, \cdots, f_m and these polynomials are in \mathcal{A} . By repeating this argument for increasing small $U \supset K$ we have density of \mathcal{A} in $\mathcal{H}(K)$.

EXAMPLE 2.6. Let Ω be a holomorphically convex open subset of \mathbb{C}^n . Any compact subset of $\Omega \times \mathbb{C}^{\mathbb{N}}$ is contained in a compact set of the form $K \times L$, where K is holomorphically convex compact subset of Ω and L is a balanced convex compact subset of $\mathbb{C}^{\mathbb{N}}$. If $f \in \mathcal{H}(K \times L)$ then f depends only a finite number of coordinates and hence, by a reduction to finite dimension and an application of the finite dimensional Oka-Weil approximation theorem, f can be uniformly approximated on some neighborhood of $K \times L$ by holomorphic functions on $\Omega \times \mathbb{C}^{\mathbb{N}}$ (see [1]).

Let E and F be (complex) Banach spaces over $\mathbf{K} = \mathbf{R}$ or \mathbf{C} with E finite dimensional and let $\mathcal{P}_a(E; F)$ be the vector space of all polynomials from E into F. We shall denote by $\mathcal{P}(E; F)$ the subspace of all continuous members of $\mathcal{P}_a(E; F)$.

DEFINITION 2.7. The $\mathcal{P}(E)$ -hull or polynomially convex hull of a set $A \subset E$ is defined by

$$\hat{A}_{\mathcal{P}(E)} = \{z \in E : |P(z)| \leq \sup_{A} |P| \text{ for all } P \in \mathcal{P}(E)\}.$$

A compact set $K \subset E$ is said to be polynomially convex if $\hat{K}_{\mathcal{P}(E)} = K$.

EXAMPLE 2.8. If D is a compact polydisc in \mathbb{C}^n , I is a finite set, and $P_i \in \mathcal{P}(\mathbb{C}^n)$ for each $i \in I$, then the compact set $\{z \in D : |P_i(z)| \leq 1$ for each $i \in I\}$ is polynomially convex. These polynomially convex compact sets are called compact polynomial polyhedra

DEFINITION 2.9. Let U be an open subset of E. The set U is said to be polynomially convex if $\hat{K}_{\mathcal{P}(E)} \cap U$ is compact for each compact set $K \subset U$. U is said to be strongly polynomially convex if $\hat{K}_{\mathcal{P}(E)} \subset U$ for each compact set $K \subset U$.

DEFINITION 2.10. E is said to be have the approximation property if for each compact set $K \subset E$ and $\epsilon > 0$ there is a finite rank operator $T \in \mathcal{L}(E; E)$ such that $||Tz - z|| \leq \epsilon$ for every $z \in K$, where $\mathcal{L}(E; E)$ is the vector space of all linear mappings from E into E.

The following theorem is known as the Oka-Weil theorem on polynomial approximation.

THEOREM 2.11. Let K be a polynomially convex compact subset of \mathbb{C}^n . Then for each $f \in \mathcal{H}(K; F)$ there is a sequence of polynomials $P_j \in \mathcal{P}(\mathbb{C}^n; F)$ which converges to f uniformly on K.

LEMMA 2.12. If K is a polynomially convex compact subset of E and if U is an open neighborhood of K, then there is a strongly polynomially convex open set V with $K \subset V \subset U$.

THEOREM 2.13. Let K be a polynomially convex compact subset of E with the approximation property. Then for each $f \in \mathcal{H}(K; F)$ there is a sequence of polynomials $\{P_j\} \subset \mathcal{P}_f(E; F)$ which converges to f uniformly on K, where $\mathcal{P}_f(E; F)$ is the vector space of all continuous polynomials of finite type from E into F.

Proof. If U is a polynomially convex open subset of E containing K then $f \in \mathcal{H}(U; F)$ from Lemma 2.12. Since f is continuous, we

have $\delta > 0$ such that $K + B(0; \delta) \subset U$ and $||f(z_1) - f(z_2)|| < \epsilon$ for all $z_1 \in K, z_2 \in B(z_1; \delta)$ and given $\epsilon > 0$. By assumption, there is a finite rank operator $T \in \mathcal{L}(E; E)$ such that $||Tz_1 - z_1|| < \delta$ for every $z_1 \in K$. For every $z_1 \in K, T(K) \subset U$ and $||f \circ T(z_1) - f(z_1)|| < \epsilon$. Since $U \cap T(E)$ is a polynomially convex open set in T(E), which is finite, we have $P_j \in \mathcal{P}(T(E); F)$ such that $||P_j(z_2) - f(z_2)|| \leq \epsilon$ for every $z_2 \in T(K)$. Since the dimension of T(E) is finite, P_j is of finite type with $P_j = \sum_j c_j \varphi_j^{m_j}$ where $c_j \in F$ and $\varphi_j \in \mathcal{L}(T(E); K)$. Therefore, we

have

$$P_{j} \circ T = \sum_{j} c_{j} (\varphi_{j} \circ T)^{m_{j}} \in \mathcal{P}_{f}(E; F).$$

Hence, we have

$$\begin{aligned} ||P_{j} \circ T(z) - f(z)|| &\leq ||P_{j} \circ T(z) - f \circ T(z)|| + ||f \circ T(z) - f(z)|| \\ &\leq 2\epsilon \end{aligned}$$

for every $z \in K$. This completes the proof.

References

- [1] S Dineen, Complex analysis in locally convex spaces, North-Holland Math. Studies 57, North - Holland Pub Co, Amsterdam, New York, Oxford, 1981
- [2] R C Gunning and H Rossi, Analytic functions of several complex variables, Prentice-Hall Inc, Englewood Cliffs, New Jersey, 1965.
- [3] Y Katznelson, Lectures on several complex variables, Yale University Press, 1964.
- [4] J Mujica, Complex analysis in Banach spaces, North Holland Math Studies 120, Elsevier Science Publishers B V, North - Halland, New York, Oxford, 1986.

Department of Mathematics College of Natural Sciences Pusan National University Pusan 609-735, Korea *E-mail* · khshon@hyowon.pusan.ac.kr