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APPROXIMATION THEOREM FOR HOLOMORPHIC 
FUNCTIONS IN FINITE AND INFINITE

DIMENSIONAL COMPLEX SPACES

Kwang Ho Shon, Chul Joong Kang and Su Mi Kwon

1. Introduction

We will eventually prove that every f E 7/(7?) can be approximated 
uniformly on compacta by polynomials in the functions /i, /2, ■•-，/n- 
For the present we note some interesting properties of Oka-Weil do­
mains. For the Banach space, J. Mujica [4] extended the Oka-Weil 
approximation theQEem,..by the technique of pol^Gmially convex set. 
In this paper, we obtain some properties of a sequence of polynomi­
als which converges to a function uniformly on a polynomially convex 
compact subset of complex Banach spaces The technique of this study 
is based on J. Mujica [4].

2. Approximation theorem

A variety V in. a domain D C Cn is globally presented in D if 
there exist functions 凡…,fk £ 71(Z)) such that V = {z E D : 
fi(z)=…=/fc(z) — 0) A variety V C Cn is regularly imbedded at 
a point zq eV if there exist holomorphic functions 陽… ,fn near 
Zq such that 方,为,•…,fn form a system of local coordinates near zq 
and V — {z : = … = J%(z) = 아 near zq. If V C Cn is regularly
imbedded, then all systems of defining functions …,fk such 
that V = {z : /i(z)= … =JX(z) = 0} locally have Jacobian of
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constant rank on connected components of V. An Oka-Weil manifold 
is the only variety which is globally presented and regularly imbedded 
in a poly disc. A regularly imbedded variety V C Cn has a natural 
complex manifold structure.

Theorem 2.1 (Oka-Weil approximation theorem [이). If D u 
Cn is a bounded analytic polyhedron determined by functions )
fm £ ‘丑(C”) then any function f e can be approximated uni­
formly on compata by polynomials in the functions h、加 … ,fm and 
the variables zi, 2% .…,^n-

Lemma 2.2. Let V be a regularly imbedded variety in the unit open 
polydisc P C Cn and let f be a holomorphic function on V. Then on 
any open polydisc P* with P* C P there exists a function f € 7/(P*) 
such that f{z)=須(z) for z eV H P*.

Definition 23 Let M be an n-dhnensfonaLcQznplex (analytic) 
manifold An open set W C M is an Oka-Weil domain, if there exists 
a relatively compact open neighborhood U and 见凡 …，/m G 
such that

(1) WczWcU.
(2) W = Un(zeM : \f3(z)\ < 1, l<j<m}.
(3) F = (/1, /2, • • * 5 fm) is an injective non- singular mapping of W 

into the unit polydisc P C Cn.

If W is an Oka-Weil domain in M〉then W is Stein. If M is a Stein 
manifold, there exists a sequence of Oka-Weil domains {Wk} such that 
Wk / M and Wk is compact and C 诳+i for A; — 1,2, • •-.

Proposition 2.4([2]). Let M be a Stein manifold and K be a 
holomorphically convex compact subset of M. IfU is any neighborhood 
of K, there is an Oka-Weil domain W, defined by global functions, such 
that K C W cW Gif.

Let K be a compact subset of M and Abe an algebra of holomorphic 
functions on M. The y4rconvex hull of in M is defined to be the set

M) = {ze M ： 丸 (2시 < for all f e A}.

We say that K is A - convex in M it K — K(4 M).
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THEOREM 2.5. Let M be a complex manifold, K be a compact 
subset of M and A C be any subalgebra such that

fl) A gives a local coordinates system at each point in M.
(2) A separates points in M.
(3) K is 4convex.
Then any holomorphic function / in a neighborhood of K is approx­

imated uniformly on K by a sequence of functions m >1.

Proof. Let be a relatively compact open neighborhood of K. By 
Proposition 2.4)we have an Oka-Weil domain

W {zeU : |A(z)| < l,z = 1,2,••-

with E Jl,z — 1,2, • • • ,m, such that K G W G W C U. Then p = 
(凡了2,…> /m) maps W biholomorphically to the closed submanifold 
W C P and W-is regularly imbedded, where P is the unit polydisc i꾜 
Cm. Since 侦K) is compact in P, there exists a polydisc P* such that 
讽K) C P* C P* C P. If / G 丸(U) then /o^-1 is holomorphic on W. 
From Lemma 2.2, we have a function f G 우/(尹*) such that / = fg厂丄 —- 〜
on W R P*. Now f is uniformly approximated on compact a in P* by 
polynomials in 冗矣，…,Therefore f is approximated on K by 
the same polynomials in , fm and these polynomials are in
A. By repeating this argument for increasing small l/ 二)K we have 
density of A in 咒(K).

Example 2.6. Let Q be a holomorphically convex open subset of 
Cn. Any compact subset of Q x CN is contained in a compact set of 
the form K x L、where K is holomorphically convex compact subset of 
Q and L is a balanced convex compact subset of CN. If f E 3~l(K x L) 
then f depends only a finite number of coordinates and hence, by a 
reduction to finite dimension and an application of the finite dimen­
sional Oka-l%괴 approximation theorem, f can be uniformly approxi­
mated on some neighborhood of K x L by holomorphic functions on 
Q x CNfsee [1]/

Let E and F be (complex) Banach spaces over K — R or C with E 
finite dimensional and let F) be the vector space of all polyno­
mials from E into F, We shall denote by P(_E; F) the subspace of all 
continuous members of %(E; F\
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Definition 2.7. The P(E)-hull or polynomially convex hull of a 
set A u E is deGned by

= {z e E : |P(^)| < sup |P| for all P e 卩(E)). 
A

A compact set K U E is said to be polynomially convex if Kp(E) = K.

Example 2.8. IfD is a compact polydisc in Cn, I is a Gnite set, and 
Pt € P(Cn) for each i E I, then the compact set {z E D : |R(z)| < 1 
for each i E 1} is polynomially convex. These polynomially convex 
compact sets are called compact polynomial polyhedra

Definfiyon 2.9. Let U be an open subset of E. The set U is said 
to be polynomially convex if R«(e)C\U is compact for each compact 
set K C U. U is said to be strongly polynomially convex if 島기岡 C U 
for each compact set K uU.

Definition 2.10. E is said to be have the approximation property 
if for each compact set K C E and e > 0 there is a finite rank operator 
T € £(E; E) such that ||Tz — z\\ < e for every z E Ky where £(E; E) 
is the vector space of all linear mappings from E into E.

The following theorem is known as the Oka-Weil theorem on poly­
nomial approximation.

THEOREM 2.11. Let K be a polynomially convex compact subset 
of Cn. Then for each f G ‘丑(K; F) there is a sequence of polynomials 
P3 € P(Cn; F) which converges to f uniidrmly on K.

Lemma 2.12. If K is a polynomially convex compact subset of E 
and ifU is an open neighborhood of K> then there is a strongly poly­
nomially convex open set V with K C V C U.

Theorem 2.13. Let K be a polynomially convex compact subset of 
E with the approximation property. Then for each f € F) there 
is a sequence of polynomials {P3} U F) which converges to f 
uniformly on K} where，Pf(E; F) is the vector space of all continuous 
polynomials of finite type from E into F.

Proof. If U is a polynomially convex open subset of E containing 
K then f c F) from Lemma 2.12. Since f is continuous, we
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have 6 > 0 such that K + B(0;5) C U and ||/(zi) 一 /(Z2)|| < e for 
all zi £ K,22 € B(zi；S) and given € > 0. By assumption, there is a 
finite rank operator T G £(E; E) such that ||Tzi —切』< 6 for every 
z\ € K. For every z\ e Ky T(K) C U and ||/oT(zi) —/(zi)|| < e. Since 
U D T(E) is a polynomially convex open set in T(E\ which is finite, 
we have P3 E F) such that |匡(癸)一 ”类)|| < e for every
Z2 € T{K\ Since the dimension of T(E) is finite, P3 is of finite type 
with 与 = £ c邳了 where 어 £ F and 灼 € £(T(E); K). Therefore, we 

3 
have

P,oT=£Cj(^oTH€P/(£；；F).
3

Hence, we have

I 旧 O T{z} - f(z)\\ < ||P? oT(z) - f o T(z)\\ + 11/ O T(z) 一 了(2시 I
< 2c

for every z E K. This completes the proof.
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