SYMMETRIC BI-DERIVATIONS ON PRIME RINGS

MEHMET SAPANCI, M. ALI ÖZTÜRK AND YOUNG BAE JUN

1. Introduction

In [6], J. Vukman has proved some results concerning symmetric bi-derivation on prime and semi-prime rings. In this short note, we obtain a few results on symmetric bi-derivations in prime rings.

2. Preliminaries

Throughout this paper all rings will be associative. Denote by R (resp., C and Z) an associative ring (resp., the extended centroid of R and the center of R). We shall write [x,y] for xy-yx. A mapping $D(-,-):R\times R\to R$ is said to be symmetric if D(x,y)=D(y,x) for all $x,y\in R$. In what follows, denote by D(-,-) a symmetric mapping from $R\times R$ to R without otherwise specified. A mapping $d:R\to R$ is called the trace of D(-,-) if d(x)=D(x,x) for all $x\in R$. It is obvious that if D(-,-) is bi-additive (i.e., additive in both arguments), then the trace d of D(-,-) satisfies the identity d(x+y)=d(x)+d(y)+2D(x,y) for all $x,y\in R$. If D(-,-) is bi-additive and satisfies the identity D(xy,z)=D(x,z)y+xD(y,z) for all $x,y,z\in R$, we say that D(-,-) is a symmetric bi-derivation

LEMMA 2.1 [1, Lemma 3 1.1]). Let R be a prime ring with char $R \neq 2$, D(-,-) a symmetric bi-derivation and d the trace of D(-,-). If U is a non-zero ideal of R such that ad(U) = 0 (or, d(U)a = 0), then a = 0 or d = 0.

Received January 21, 1999

¹⁹⁹¹ Mathematics Subject Classification 16N60, 16W25.

Key words and phrases Symmetric bi-derivation, trace

This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No. BSRI-96-1406

LEMMA 2.2 [1, Theorem 3.1.3]). Let R be a prime ring with char $R \neq 2$, D(-,-) a symmetric bi-derivation and d the trace of D(-,-). For a fixed element $a \in R$, we have

- (i) if [a, d(x)] = 0 for all $x \in R$, then $a \in Z$ or d = 0.
- (ii) if $[a, d(x)] \in Z$ for all $x \in R$ and for non-zero trace d with $d(a) \neq 0$, then $a \in Z$.

LEMMA 2.3 [3, Lemma 2]). Let R be a prime ring and let $a, b, c \in R$. If axb = cxa for all $x \in R$, then a = 0 or b = c.

3. Main results

We begin with the following lemma.

LEMMA 3.1. Let R be a prime ring with char $R \neq 2$ and let d_1 and d_2 be traces of symmetric bi-derivations $D_1(-,-)$ and $D_2(-,-)$, respectively. If the identity

(1)
$$d_1(x)d_2(y) = d_2(x)d_1(y)$$

holds and $d_1 \neq 0$, then there exists $\lambda \in C$ such that $d_2(x) = \lambda d_1(x)$.

Proof. Let $x, y, z \in R$. Replacing y by y + z in (1), we get

(2)
$$d_1(x)D_2(y,z) = d_2(x)D_1(y,z),$$

and replacing z by zy in (2) leads to the identity

(3)
$$d_1(x)zd_2(y) = d_2(x)zd_1(y).$$

It follows from replacing y by x in (3) that

(4)
$$d_1(x)zd_2(x) = d_2(x)zd_1(x).$$

Thus if $d_1(x) \neq 0$, then by (4) and [4, Corollary to Lemma 1.3.2] we have $d_2(x) = \lambda(x)d_1(x)$ for some $\lambda(x) \in C$. Hence if $d_1(x) \neq 0$ and $d_1(y) \neq 0$, then $(\lambda(y) - \lambda(x))d_1(x)zd_1(y) = 0$ by (3). Since R is prime, it follows from Lemma 2.1 that $\lambda(x) = \lambda(y)$. This shows that there exists $\lambda \in C$ such that $d_2(x) = \lambda d_1(x)$ under the condition $d_1(x) \neq 0$. On the other hand, assume that $d_1(x) = 0$. Since $d_1 \neq 0$ and R is prime, it follows from (3) that $d_2(x) = 0$ as well. Thus $d_2(x) = \lambda d_1(x)$. This completes the proof.

THEOREM 3.2. Let R be a prime ring with char $R \neq 2$ and let $d_1 \neq 0$, d_2 , d_3 , and $d_4 \neq 0$ be traces of symmetric bi-derivations $D_1(-,-)$, $D_2(-,-)$, $D_3(-,-)$, and $D_4(-,-)$ respectively. If the identity

(5)
$$d_1(x)d_2(y) = d_3(x)d_4(y)$$

holds for all $x, y \in R$, then there exists $\lambda \in C$ such that $d_2(x) = \lambda d_4(x)$ and $d_3(x) = \lambda d_1(x)$.

Proof. Let $x, y, z, w \in R$. Replacing y by y + z in (5), we get

(6)
$$d_1(x)D_2(y,z) = d_3(x)D_4(y,z),$$

and replacing z by zy in (6) and using (6) leads to the identity

(7)
$$d_1(x)zd_2(y) = d_3(x)zd_4(y).$$

It follows from replacing z by $zd_4(w)$ in (7) that

$$d_1(x)zd_4(w)d_2(y) = d_3(x)zd_4(w)d_4(y) = d_1(x)zd_2(w)d_4(y),$$

so that $d_1(x)z(d_4(w)d_2(y)-d_2(w)d_4(y))=0$. Since $d_1\neq 0$ and R is prime, it follows that $d_4(w)d_2(y)=d_2(w)d_4(y)$. Applying Lemma 3.1, there exists $\lambda\in C$ such that $d_2(y)=\lambda d_4(y)$, which implies from (7) that $(\lambda d_1(x)-d_3(x))zd_4(y)=0$ so that $d_3(x)=\lambda d_1(x)$. This completes the proof.

THEOREM 3.3. Let R be a prime ring with char $R \neq 2,3$ and let d be the trace of a non-zero symmetric bi-derivation D(-,-) For a fixed element a of R with $d(a) \neq 0$, if the identity

$$d(x)ad(x) = 0$$

holds for all $x \in R$, then $a \in Z$.

Proof. By linearizing (8) and using (8), we get

$$d(x)ad(y) + 2d(x)aD(x,y) + d(y)ad(x) + 2d(y)aD(x,y)$$
(9)
$$+ 2D(x,y)ad(x) + 2D(x,y)ad(y) + 4D(x,y)aD(x,y) = 0$$

for all $x, y \in R$. Substituting -x for x in (9), we have

$$d(x)ad(y) - 2d(x)aD(x,y) + d(y)ad(x)$$

$$-2d(y)aD(x,y) - 2D(x,y)ad(x) - 2D(x,y)ad(y)$$

(10)
$$+4D(x,y)aD(x,y)=0.$$

By adding (9) and (10), and using the fact that $char R \neq 2$, we obtain

(11)
$$d(x)ad(y) + d(y)ad(x) + 4D(x,y)aD(x,y) = 0.$$

Now we substitute x + y for x in (11) and expand it, and then we use (8), (11) and the fact that $char R \neq 2$. Then we obtain

(12)
$$D(x,y)ad(y)+d(y)aD(x,y)+2d(x)aD(x,y)+2D(x,y)ad(x)=0.$$

Replacing y by x + y in (12) and then using (8), (11), (12) and the fact that $char R \neq 3$, we get

(13)
$$D(x,y)ad(x) + d(x)aD(x,y) = 0$$

Substituting yz for y in (13), and reminding that

$$D(x,y)ad(y) = -d(y)aD(x,y) \ \ ext{and} \ \ D(z,y)ad(y) = -d(y)aD(z,y),$$
 we can write

(14)
$$D(x,y)[z,ad(y)] = [x,d(y)a]D(z,y).$$

Replacing x by xw in (14) and using (14) again, we have

$$(15) D(x,y)w[z,ad(y)] = [x,d(y)a]wD(z,y).$$

Exchanging z for x in (15); then

(16)
$$D(x,y)w[x,ad(y)] = [x,d(y)a]wD(x,y).$$

It follows from Lemma 2.3 that D(x,y)=0 or [x,ad(y)]=[x,d(y)a]. In other words, R is the union of its subsets $A:=\{x\in R|D(x,y)=0\text{ for all }y\in R\}$ and $B:=\{x\in R|[x,ad(y)-d(y)a]=0\text{ for all }y\in R\}$. Note that A and B are additive subgroups of R. Since R can't be written as the union of A and B, it follows that A=R or B=R so from the hypothesis that R=B. This implies that $[a,d(y)]\in Z$ for all $y\in R$. By Lemma 2.2(ii), we know that $a\in Z$. This completes the proof.

References

- [1] N Argaç, On prime rings with derivation, Ph D. Thesis, Ege University, 1992.
- [2] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
- [3] M. Bresar, A note on derivations, Math J. Okayama Univ. 32 (1990), 83-88.
- [4] I N Herstein, Rings with involution, Univ of Chicago Press, Chicago, 1969.
- [5] J. Mayne, Centralizing mappings of prime rings, Canadian Math. Bull. 27(1) (1984), 122-126
- [6] J Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Mathematicae 38 (1989), 245-254.
- [7] M. S. Yenigul and N. Argaç, Ideals and symmetric bi-derivations of prime and semi-prime rings, Math. J. Okayama Univ. 35 (1993), 189-192

M. Sapanci Department of Mathematics Faculty of Sciences, Ege University 35100-Bornova, Izmir, Turkey

M. A. Özturk
Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140-Sivas, Turkey
E-mail: maozturk@bim.cumhuriyet.edu.tr

Y. B Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail: ybjun@nongae.gsnu.ac.kr