L^p ESTIMATES FOR AREA INTEGRALS WITH RESPECT TO SINGULAR MEASURES

CHOON-SERK SUH

1. Introduction

The theory of the tent spaces on the upper half-space \mathbb{R}^{n+1}_+ was introduced from the work of R. R. Coifman, Y. Meyer and E. M. Stein [1]. Their works resulted in many applications involving the study of a variety of questions related to harmonic analysis. We carry out the theory of the tent spaces on the generalized upper half-space $X \times (0, \infty)$, where X is a space of homogeneous type.

We begin by introducing the notion of a space of homogeneous type [2]: Let X be a topological space endowed with Borel measure μ Assume that d is a pseudo-metric on X, that is, a nonnegative function on $X \times X$ satisfying

- (i) $d(x,x) = 0; d(x,y) > 0 \text{ if } x \neq y,$
- (ii) d(x,y) = d(y,x), and
- (iii) $d(x, z) \leq K(d(x, y) + d(y, z))$, where K is some fixed constant.

Assume further that

(a) the balls $B(x, \rho) = \{y \in X : d(x, y) < \rho\}, \ \rho > 0$, form a basis of open neighborhoods at $x \in X$,

and that μ satisfies the doubling property:

(b) $0 < \mu(B(x, 2\rho)) \le A\mu(B(x, \rho)) < \infty$, where A is some fixed constant.

Then we call (X, d, μ) a space of homogeneous type.

Property (iii) will be referred to as the "triangle inequality." Note that property (b) implies that for every C>0 there exists a constant $A_C<\infty$ such that

$$\mu(B(x,C\rho)) \le A_C \mu(B(x,\rho))$$

Received January 7, 1999. Revised April 10, 1999

for all $x \in X$ and $\rho > 0$.

Now consider the space $X \times (0, \infty)$, which is a kind of generalized upper half-space over X. We then define the analogue of nontangential or conoical regions as follows. For $x \in X$, set

$$\Gamma(x) = \{(y, t) \in X \times (0, \infty) : x \in B(y, t)\}.$$

For any set $E \subset X$, the *tent* over E is the set

$$\hat{E} = \{(y,t) \in X \times (0,\infty) : B(y,t) \subset E\}.$$

It is then very easy to check that

$$\hat{E} = (X \times (0, \infty)) \setminus \bigcup_{x \notin E} \Gamma(x).$$

For a function f defined on $X \times (0, \infty)$, we define an area integral $A_{\alpha}(f)$ by

$$(1.1) A_{\alpha}(f)(x) = \left(\int_{\Gamma(x)} |f(y,t)|^2 \frac{d\mu(y)dt}{t^{\alpha+1}}\right)^{1/2}, \quad \alpha \in \mathbb{R}$$

for $x \in X$.

We then also define the tent space $T_2^p(X \times (0, \infty)), 0 , by$

$$T_2^p(X\times(0,\infty))=\{f:A_\alpha(f)\in L^p(d\mu)\}$$

with

$$||f||_{T_2^p} = ||A_{\alpha}(f)||_{L^p(d\mu)}.$$

For $0 , a function a, supported in <math>\hat{B}$ for some ball B in X, is said to be a (p, 2)-atom if

$$\int_{\hat{B}} |a(x,t)|^2 \frac{d\mu(x)dt}{t} \le \mu(B)^{1-2/p}.$$

We now define certain generalized area integrals associated with appropriate singular measures on X. Let ν be a positive measure on X, and assume there exists a constant C so that

(1.2)
$$\nu(B(x,\rho)) \le C\rho^{\beta}$$

for some fixed $\beta > 0$. Then, for fixed p, 0 , and a function <math>f defined on $X \times (0, \infty)$, we define another area integral $G_{p,\alpha}(f)$ by

$$(1.3) \quad G_{p,\alpha}(f)(x) = \left(\int_{\Gamma(x)} |f(y,t)|^2 \frac{t^{2(\alpha-\beta)/p}}{t^{\alpha+1}} d\mu(y) dt \right)^{1/2}, \quad \alpha \in \mathbb{R}$$

for $x \in X$. Note that when $\alpha = \beta$ the two definitions (1.1) and (1.3) coincide.

In this paper we are concerned with the inequality for the L^p norms of area integrals $A_{\alpha}(f)$ and $G_{p,\alpha}(f)$ in $X \times (0,\infty)$; more precisely, there exists a constant C_p so that if $f \in T_2^p(X \times (0,\infty))$, $0 , and <math>\nu$ is a positive measure on X satisfying (1.2), then we have

$$||G_{p,\alpha}(f)||_{L^p(d\nu)} \le C_p ||A_{\alpha}(f)||_{L^p(d\mu)}.$$

2. Main result

We state the two lemmas we need.

LEMMA 1. Let (X, d, μ) be a space of homogeneous type. If $f \in T_2^p(X \times (0, \infty))$, 0 , then

$$|f(x,t)| \leq \sum_{j=0}^{\infty} \lambda_j a_j(x,t),$$

where the a_j 's are (p, 2)-atoms, and the λ_j 's are positive numbers. Moreover,

(2.2)
$$\sum_{j=0}^{\infty} \lambda_j^p \le C_p ||A_{\alpha}(f)||_{L^p(d\mu)}^p.$$

Proof. See Suh[3].

LEMMA 2. Let (X,d,μ) be a space of homogeneous type, and let ν be a positive measure on X with the property (1.2). Suppose $0 . Then there exists a constant <math>C_p$ so that if a is a (p,2)-atom supported in the tent \hat{B} over a ball B having radius ρ , then

$$\int_X [G_{p,\alpha}(a)(x)]^p d\nu(x) \le C_p.$$

Proof. Let a be a (p, 2)-atom supported in the tent \hat{B} over a ball B having radius ρ , and $\chi_{B(y,t)}$ be the characteristic function of the ball B(y,t). Then

$$(2.3)$$

$$\int_{X} [G_{p,\alpha}(a)(x)]^{2} d\nu(x)$$

$$= \int_{X} \left(\int_{\Gamma(x)} |a(y,t)|^{2} \frac{t^{2(\alpha-\beta)/p}}{t^{\alpha+1}} d\mu(y) dt \right) d\nu(x)$$

$$= \int_{X} \left(\int_{X \times (0,\infty)} |a(y,t)|^{2} \frac{t^{2(\alpha-\beta)/p}}{t^{\alpha+1}} \chi_{B(y,t)}(x) d\mu(y) dt \right) d\nu(x)$$

$$\leq C \int_{X \times (0,\infty)} |a(y,t)|^{2} \frac{t^{\beta+2(\alpha-\beta)/p}}{t^{\alpha+1}} d\mu(y) dt,$$

since

$$\int_X \chi_{B(y,t)}(x) d\nu(x) \leq Ct^\beta.$$

Now observe that $t \leq 2\rho$ for $(y,t) \in \hat{B}$ and small $\rho > 0$. So the last side of (2.3) is less than

$$C\rho^{(\alpha-\beta)(2/p-1)} \int_{\hat{B}} |a(y,t)|^2 \frac{d\mu(y)dt}{t}$$

 $\leq C\nu(B)^{1-2/p} \quad \text{(by } 1-2/p < 0\text{)}.$

Thus

(2.4)
$$\int_{Y} [G_{p,\alpha}(a)(x)]^{2} d\nu(x) \le C\nu(B)^{1-2/p}$$

for some constant C. For 0 , Hölder's inequality and (2.4) give that

$$\int_{X} [G_{p,\alpha}(a)(x)]^{p} d\nu(x)
\leq \left(\int_{X} [[G_{p,\alpha}(a)(x)]^{p}]^{2/p} d\nu(x) \right)^{p/2} \left(\int_{X} [\chi_{B}(x)]^{2/(2-p)} d\nu(x) \right)^{(2-p)/2}
\leq \left(\int_{X} [G_{p,\alpha}(a)(x)]^{2} d\nu(x) \right)^{p/2} \left(\int_{X} [\chi_{B}(x)]^{2/(2-p)} d\nu(x) \right)^{(2-p)/2}
\leq C_{p}$$

for some constant C_p . The proof is therefore complete.

The main result of this paper is now the following.

THEOREM 3. Let (X, d, μ) be a space of homogeneous type, and let ν be a positive measure on X with the property (1.2). Then there exists a constant C_p so that if $f \in T_2^p(X \times (0, \infty))$, 0 , then

$$||G_{p,\alpha}(f)||_{L^p(d\nu)} \le C_p ||A_{\alpha}(f)||_{L^p(d\mu)}.$$

Proof. Let $f \in T_2^p(X \times (0, \infty)), 0 and write$

$$|f(y,t)| \leq \sum_{j=0}^{\infty} \lambda_j a_j(y,t),$$

as in (2.1) of Lemma 1. Then we obtain

$$\begin{split} [G_{p,\alpha}(f)(x)]^2 &\leq \int_{\Gamma(x)} [\sum_{j=0}^{\infty} \lambda_j a_j(y,t)]^2 \frac{t^{2(\alpha-\beta)/p}}{t^{\alpha+1}} d\mu(y) dt \\ &= \sum_{i,j} \int_{\Gamma(x)} \lambda_i \lambda_j a_i(y,t) a_j(y,t) \frac{t^{2(\alpha-\beta)/p}}{t^{\alpha+1}} d\mu(y) dt \\ &\leq \sum_{i,j} \left(\int_{\Gamma(x)} [\lambda_i a_i(y,t)]^2 \frac{t^{2(\alpha-\beta)/p}}{t^{\alpha+1}} d\mu(y) dt \right)^{1/2} \end{split}$$

$$\times \left(\int_{\Gamma(x)} [\lambda_{\jmath} a_{\jmath}(y,t)]^{2} \frac{t^{2(\alpha-\beta)/p}}{t^{\alpha+1}} d\mu(y) dt \right)^{1/2}$$

$$= \sum_{i,j} \lambda_{i} \lambda_{j} G_{p,\alpha}(a_{i})(x) G_{p,\alpha}(a_{j})(x)$$

$$= [\sum_{j=0}^{\infty} \lambda_{j} G_{p,\alpha}(a_{j})(x)]^{2}.$$

Thus we obtain

$$[G_{p,\alpha}(f)(x)]^p \leq [\sum_{j=0}^{\infty} \lambda_j G_{p,\alpha}(a_j)(x)]^p.$$

Integrate both sides of (2.5) with respect to $d\nu(x)$. Then it follows from (2.2) and Lemma 2 that

$$\begin{split} \int_X [G_{p,\alpha}(f)(x)]^p d\nu(x) &\leq \int_X \sum_{j=0}^\infty \lambda_j^p [G_{p,\alpha}(a_j)(x)]^p d\nu(x) \\ &\leq \sum_{j=0}^\infty \lambda_j^p \int_X [G_{p,\alpha}(a_j)(x)]^p d\nu(x) \\ &\leq C_p \sum_{j=0}^\infty \lambda_j^p \\ &\leq C_p ||A_\alpha(f)||_{L^p(d\mu)}^p. \end{split}$$

Thus

$$||G_{p,\alpha}(f)||_{L^p(d\nu)} \le C_p ||A_{\alpha}(f)||_{L^p(d\mu)}.$$

The proof is therefore complete.

References

- R. R. Coifman, Y. Meyer and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Func. Anal. 62 (1985), 304-355
- [2] _____, Un nouvel espace fonctionnel adapté a l'étude des opératéurs définis par des intégrales singulières, Proc. Conf. on Harmonic Analysis, Cortona, Lecture Notes in Math., Vol. 992, 1-15, Springer-Verlag, Berlin, 1983.

[3] C.-S Suh, A decomposition into atoms of tent spaces in the context of spaces of homogeneous type, Comm Korean Math. Soc, to appear

Department of Mathematics Dongyang University Youngju 750-711, Korea E-mail: cssuh@phenix dyu.ac.kr