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GENERALIZED SOBOLEV SPACES
AND SOME RELATED PROBLEMS

YOUNG SIK PARK

1. Introduction

The generalized Sobolev space H} was defined and studied by Pahk
and Kang (6] using ultradistribution theory of Beurling [1] and Bjorck
[2]. The space H?, with a weight function w possessing some suitable
properties, is a generalization of the Sobolev space H*.

Pathak [9] studied general Sobolev spaces H5?, 1 < p < oo, as a
generalization of the space HZ. In this case, H>? = HS.

Roumieun [10] has also given an ultradwstribution theory in which
growth of derivatives of test functions are restricted by means of certain
sequences.

A unification of the two theories can be found in Komatsu [4] and
he derived a lot of results. The Beurling type spaces have been defined
by Bjorck {2] in terms of a weight funtion w : R* — [0,00) under
some assumptions.

Park (8] studied the generalized Sobolev spaces Wrs (2 (M), Wire(
Q; [My]} and relation between Dy, (2; [Mj]) and D(£); [Mg]).

In this article we investigate some problems on the space E s (R™) of
ultradifferentiable functions of class M and that of £ (K )of Whitney
jets of class M on a compact set K in R"*. Also we consider the
problems on M = (M) especially when it satisfies (M.2) and (44.3)".
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2. Some previous results and ultradifferentiable functions

Let M = (Mi)$° be a sequence of positive numbers which satisfies
some of the following conditions with My = 1;

(M.1) MZ < Mi_iMjy1,k €N,

(M.2) There are constants K > 0 and H > 1 such that

< ¥ mi _ = 0};
M, < KH Orélllngle Lke Ng=NU{ }

(M.3) There is a constant K > 0 such that

Z Mz 1 ﬁi{‘fk keN:
I=kt1 k+1
(M.3)’ Z M-
M,C
We write my, = 77 ,k € N, and define m(¢t) = the number of
k—tlk
my < £, M(t) —suplong

PROPOSITION 2.1. Suppose that M = (M;)§° satisfies (M.1). Then,
(1) M(t)= f; 2Xdx  ie, WM = 20
(2) m(t) + M(2) < M(et),

(3) (M.1) < {my} is an increasing sequence,
(4) M; < mﬁ and M M;._, < M for 3 <k.
(5) M(s+1t) < M(2s)+ M(2t), s,t>0.

Proof. They are obvious, for details see Park [7].

We will assume, in addition to (M.1) and (M.3)’, that M satisfies
the following conditions, where A is some positive constant.

(M.4) M < AAM My, 0<j<k.

(M5) Mg, < AkMk“, k € No

(M.6) EME < (k= O)My_1Mpy,, k>2

Note that (MG) = (M.1) and (M.2} & (M.4). It is known by Bruna
[3] that the condition {(M.4) implies (and is in fact equivalent to the
statement) that for each ¢ € N there exist A, and B, such that
(1) gM(t) < M(A,t) + constant, ¢ > 0; (2) My < B;MZ,k € Ny.
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THEOREM 2.2. If, for each q € N, there exists B, such that My <
ByM], then there exists A, such that gM(t) < M(A4t), t> 0.

Proof. Let A, = sup B;—" , then
k

t* Btk (Agt)*
M(t) = 1 1 i< log 27 = M(A,t).
gM(t) = gsuplog 37 < sgp og M, <suplog o - (Agt)

The condition (M.5) and (4 ) in Proposition 2.1 imply that my ;1 <

AM} q < Amy and my and M,c are the same order. It also implies that

m(t ) and M(t) are of the same order in the sense that, together with
m(t) < M{et}) , we also have M(t) < Am(B’t) < AM{(Bt) for some
constants A, B’ > 0, where B = eB’.

PROPOSITION 2.3.
(1) (M.6) & M—'iL is increasing.

(2) (M.6) Jmphes( )2 (kﬁ;l;- (A:kl;i

ie, Ny = %’j—,& is Ioga.rlthmzcaﬂy convex. The converse is not
true in general.

(3) (M.4) implies N;; < A*N,Nj_,.
ie., Ny satisfies condition (M.4). The converse is not true in
general.

(4) (M 5) imphes N, | < AXNFTL,
i.e., Ny satisfies condition (M.5). The converse is not true in
general.

Proof. They are obvious.

Suppose M = (M;)§° satisfies (M.1) and (M.3)". Let Ep(R™) be
the space of functions f € C°(R") such that, for every compact set
K in R"®,

D> f(z)] 0 o
P = oA DY = () (),
K,h{f) aiull\?é. hl(xiM]al 3 (axl } amn)
zeK

is finite for some k > 0. The condition (M.3)’ guarantees that £ (R™)
is a non quasi-analytic class{see Mandelbrojt [5]).
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THEOREM 2.4. The space Ep{R™) of ultradifferentiable functions
of class M is a Silva space, that is, inductive limit of Fréchet spaces
such that the canonical mappings are compact.

Proof. We define for 3 € N, Ep ,(R™) = {f € C°(R") : for every
compact set K in R"®, Pk ,(f) < oo}, where the topology in Ea ,(R")
is defined by, for an increasing sequence {K,} of compact sets such that
UK, = R", the system of seminorms {Px, , : i € N}.

Then FEjpr,(R") is a Fréchet space and the canonical mappings
Eum ;(R") — Epy41(R™) are compact. Therefore,

Ep(R™) = ind lim,_, 0 Ear, (R™).

3. Non-quasi-analyticity

Suppose that M = (M;)§° satisfies (M.1). Integrating by parts, we
have

(31) Z ,,;; / dm(A) m(t) m()\)d/\‘

2
my <t 0 A

Hence we can prove by (3.1) the Carleman’s theorem: {M.3)' & (1)&
(2)=(3)e(4); (1) T2y <00, (2) 57 BdA < oo,
o HO gt < o0, (4) 220, ﬁ < o0.
Also (M.3)" implies *
M(t) 0.

) k
lim — =0< lim w:()# lim ——= =
k— o0 ML t—oo t=oo  {

PROPOSITION 3.1. Suppose that M = (My)§° satisfles (M.1). If
hmk_,oom = 0, then

(3.2) /0 ” A-i@dt: /0 m(t)dt
“dm(t) _ [ m()
(3.3) /0 =0 - /0 gl

Proof. We can show that easily.
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THEOREM 3.2. Suppose that M = (My)§° satisfies (M.1). Then M
satisfies {M.3)’ if and only if there is a constant A such that

(3.4) /t m; ) A< A+ Et) fort > m;.

Proof. Suppose that M satisfies (M.3)'. Then ™ ( — 0 as A — 0.
Hence by setting k = m(¢) > 1, we have

/ m(A) - m(t) N dm(}) m(t) 2 1 < ™) ) LA
t A2 t t+0 A et m
Conversely suppose that (3.4) holds. Let my, < mgg41 =+ = mg <

mye + 1. We have again limy_, . mo‘) = 0. Hence if mg, < t < my,
then we have

o o0 [ee) [ee]
s Lleoy 4 :/ d_"i(_&:/ m)fj)dx—mf)s,q.
Ma kg1 T t A t

g=k

THEOREM 3 3{ KOMATSU [4] PROPOSITION 4.4). Suppose that M =
(My)g° satisfies (M.1) Then M satisfies (M.3) if and only if there is a
constant A such that

(3.5) /t mm T IN< (A+1) Et) fort > my.

THEOREM 3.4. Suppose that M = (M)§° satisfies (M.1). Then M
satisfies (M.3)} if and only if

(3.6) /too d-i)f-)ﬂ < Amit) fort > m;.

Proof. Since ft m(’\)d/\ — m(t) + f°° M , (M.3) & f°° dm{A) <
Amt(t) by Theorem 3.3



24 Young Sik Park

PROPOSITION 3.5. Suppose that M = (M})§° satisfies (M.1) and
(M.3). Then we have the following relations:

(3.7) i m;j) dr = %@ + ot N{\(;‘) da,
(3.8) / ” Mf\(;‘) dr= Mf‘? + f m(’\)dA
and hence by (1) or (2) we have

(3.9) fo ” %%’\ld,\ - fo ” T{i)dA.

By (1) and (2), we have
(3.10) fo Fmd) - M) ;2M Ny = /ﬁ o M) - m) 5 UGGV

Proof. By simple calculating we can show the relations.
Integrating both sides of (3.5), we obtain for ¢ > my f du f o m(’\’ d\ =

tf7° B+ [ AN —my [ g
<A+ [ E‘glid,\.
Hence we have the following relation (3.11).
PROPOSITION 3.6. (3.11)& (3 12)= (3.13) = (3.14):
m(A) m(X) /°° m(\)
11 < .
(3.11) t/t e A< AmIAdA+ . S

% m(A)
22

dA.

(3.12) t/ ()‘)d,\< A[M(t) — M(m1)]+m1/

mj

(3.13) t ft ” m/\(j‘) A < AM(E) +my f m)f)‘) dA

for allt > 0.

(3.14) ¢ l ” 1"{\(;‘) dA < (A+ M(E) +m fo % M; CIPN

for all t > 0.
Proof. By (3.8) and (3.9), (3.13)= (3.14). The others are obvious.
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4. Whitney jets of class M on K

The letters ¢, § will mean multi-indexes in NJ'. Fora = (oq,--+ , an),
we write o = a!---an!l and |af = a3 + - + an. Also, o < 3 stands
for o, < B{(z=1,- - ,n}and, for z € B*, 2% = =" ---25". Let K be
a compact set in R™. A jet in K is a multisequence F' = (f,) of con-
tinuous functions f, on K. For a jet F, for z,y € K,z € R",m € Ny
and |a| < m, we put

(4.1) areE =Y 2D ae

jal<m

42 (RCPL) = fal) - Y 22— ap

fat8l<m

A jet F'is called a Whatney jet on K if it satisfies, for all m € Ny and
laf < m,

(4.3) (BT F)aly)] = oz — y[™ )

for 2,y € K, as |z —y| — 0. We write C°°(K) for the space of Whitney
gets on K.

Let C"™(K),m € Ny, be the space of all m times continuously dif-
ferentiable functions on X in the sense of Whitney ie.,, C™(K) =
{F = (fo;|la}) < m)| F is an array of continuous functions f, on K
such that for each ja] <m

(BT F)a(y)]

P T=r tends to zero uniformly as|lz —y] — 0 in K}.

Define the norm of F = (f,) € C™(K) by

[Fllcmxy = IS&P | fellc(rey-

Then (C™(K), ||-l¢m (k) is a Banach space. The Fréchet space C°(K)
is defined by

C*>(K) = proy nii_t;noocm(K).
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DEFINITION 4.1. A jet F = (f,) on K is called a Whitney jet of
class M if it satisfies the conditions;

(4.4) Ifa(z)| < AR M, @€ N}, z€K,
(4.5)

(RPF)a(y) < BEZY 0

R M, 0,7,y € K,m € Ny, la] <m
(m — |a| + 1)! mtlL 5 Y ol

for some constants A, B > 0 and some h > 0. We write Ep(K) for
the space of Whitney jets of class M on K.

Bruna {3] showed that Whitney’s extension theorem for Epr{R™):

THEOREM 4.2. Suppose M = (My)§° satisfies (M.1),(M.4),(M.5),
(M.6) and (M.3). Then, for any F € Em(K) there exits f € Ep(R")
such that D® f(z} = fo(z) for all « € Ng and z € K.

THEOREM 4.3. For a jet F' = (f,) on K, we define

Mal=)l

hlelp +inf{B | constant B satisfies (4.5)},

1F |, = Sllp
aENo
Emn(K) = A{F = (fa) € Ep(K) : | Fl| ,n < 00}

Then EM(K) = ind limh__,oo EM,h(K)

Proof. If h < R, then ||Filxn > |F| k.r and hence the canon-
ical mappings Epn(K) — Epp(K) are compact and Ep(K) =
ind limh_,oo EM)h(K).

Suppose that M = (Mk)8° satisfies (M. l) (M.3),(M.4),(M.5) and

t* k!
(M.6). We define Ny = X N(t) = sup log A and H(t) = SR,
exp N(t™1).

THEOREM 4.4. Suppose that M = (M) satisfies (M.1), (M.3)
and (M.5). For each n € N, there exists a sequence {a'} such that

(1) Zk_L<2 ag = L.
(2) af < H(Bfn)fiMb k € Ny,
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) M
where B is a constant that does not depend on n, €, = —Ani—ﬁ, and

A > 1 is a fixed constant in (M.5).

Proof. The construction is simply modified one in {3].
(1) We define
€M, for k>n

n* for k<n.

Then a], = n™ < ey M,, by (M.5). Hence, using (M.3),

ay =

DI LTy Y
k>n k“” k>n k+1M’° Mn1s

Since 3, .. % nk+1 =Y i<n = =1, we have (1).
(2) For k > n, {2) is obvious since H(¢#) > 1. Since A > 1. we have

n k k

sup ak ____%il__ sup Mk+1 = M2+1
k<n ékAJk k<n AknkMkMk k<n M,’:Mk :11+I

A"n™ moA)*nl!

- S ( L ) S H(Bén),
e M, My
where mg = min{m € N : m < % } B= moA
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