초록
In this paper, a content-based image retrieval scheme based on scale-space theory is proposed. The existing methods using scale-space theory consider all scales for image retrieval,thereby requiring a lot of computation. To overcome this problem, the proposed algorithm utilizes amodified histogram intersection method to select candidate images from database. The relative scalebetween a query image and a candidate image is calculated by the ratio of histograms. Feature pointsare extracted from the candidates using a corner detection algorithm. The feature vector for eachfeature point is composed of RGB color components and differential invariants. For computing thesimilarity between a query image and a candidate image, the euclidean distance measure is used. Theproposed image retrieval method has been applied to various images and the performance improvementover the existing methods has been verified.