Changes in Color, Protein Content, Solubility, Foaming Capacity and pH of Desugarized Broiler and Porcine Plasma Powder During Storage at Room Temperature

Jae Jun Lee and Young Hyoun Yi
Food Science and Technology Department and Institute of Food Biotechnology
Seoul National University of Technology

Abstract

Broiler and porcine blood plasma were desugarized by GOD (glucose oxidase 10 units/g) or baker's yeast (0.3% w/w) and dried. The color, biuret protein content, solubility, foaming capacity and pH of desugarized blood plasma powder during storage at room temperature were investigated. Desugarized plasma powder was lighter and less red and yellow than the control group (P<0.05). Biuret protein content and solubility of deglucosered plasma powder were higher than the control. Biuret protein content and solubility of all samples decreased during storage (P<0.05). Generally, deglucosered samples showed better foaming capacity than the controls (P<0.05). The pH of deglucosered broiler samples by yeast and porcine samples were decreased just after initial increasing, while the pH of other broiler powder was continuously decreased during storage. Deglucosered porcine powder always showed higher pH values than the control (P<0.05). Overall, desugarization of broiler or porcine blood plasma before drying improved color, biuret protein content, solubility and foaming capacity.

Key words: desugarization, blood plasma, physical characteristics
원리 때문에 유리방산과 인지방실의 산화가 촉진되는 것으로 여겨진다.

Yasutoshi 등은 가축 혈장에 glucose oxidase를 첨가함으로써 건조한 혈장 포도당의 함량을 줄일 수 있다. 이 결과, 산은에서 오랜 기간 저장한 후에도 높은 집단도가 유지되었다. 그러나 본 공정이 특허인 관계로 자세한 설명은 알려져 있지 않으나 경제적 측면으로 볼 때도 glucose oxidase의 산정적 대량 사용은 현실성이 없어지고 있다.

Carlin과 Ayres는 glucose oxidase와 catalase를 사용하여 낱배(牌照) 포도당을 제거함으로써 백색가치 없는 제품의 생산이 가능하였다. Lee 등(21) 및 Lee와 Chang(22)은 glucose oxidase나 효모에 의해 탈당(脱糖, desugared)된 건조 계란의 제조 과정과 저장성 등을 연구하였다. 동 연구에 의하여 저장 기간중 포도당이 제거된 식료의 pH, 용해도와 경 강도는 감소한 반면 browning 간, 유지력을(emulsifying capacity)와 유아의정성(foaming capacity)이 증가하였다.

이와 같이(23)는 glucose oxidase 및 제빵용 효모를 사용하여 육제와 태지 혈장의 실용적인 탈당 방법을 모색했다. 하지만 탈당에 의한 혈장분의 이화학적 특성 변화에 관한 연구는 매우 드문 편이다. 따라서 본 연구에서는 glucose oxidase이나 제빵용 효모를 사용하여 포도당을 제거한 육제와 태지 혈장분의 산도 저장중 색깔, 단백질 함량, 용해도, 기포력(foaming capacity) 그리고 pH의 변화를 조사하고자 한다.

재료 및 방법

실험계획

육제와 태지 혈장의 포도당을 제거하는 3가지 방법 (control, glucose oxidase 10 units/g, baker's yeast treatment 0.3% w/w) X 저장 기간(0, 2, 4, 6, 8주)의 factorial arrangement로 CRD (completely random design)을 사용하였다. glucose oxidase나 제빵용 효모를 사용하여 포도당이 제거된 육제와 태지 혈장분의 산도 저장중 2주 간격으로 8주까지 색깔, 단백질 함량, 용해도, 기포력과 pH를 각각 4번씩 측정했다.

육제와 태지의 혈장분

육제와 태지 혈액은 각각 대상마니커(京기도 동두천시 하봉암동)의 우성농협(주) 서울 성동구 마장동에서 채취하였다가 40%의 sodium citrate로 된 항응고제 용액 1% (w/v)를 첨가하였다. 항응고제가 혈합한 후 저온으로 유지된 ice chest에 넣어 본고 실험실로 운반하였다. 혈장분리는 혈액 도착 즉시 1,816 x g (gravity)에 3,100 rpm에서 15분간 원심분리(비전 과학, VS-21SMTN, 경기도 부천시 오정구 삼정동) 하여 혈장인 상아액을 얻었다.

육제와 태지 혈장의 탈당과 혈장분 준비

원심분리된 육제와 태지 혈장을 얻은 즉시 glucose oxidase (Product No. G-2133, Sigma Chemical Co., St. Louis, MO, USA)를 혈장 1g 당 10 units 또는 제빵용 효모 (대아상고 (주) 세프인스타트 천연이스트, 서울 서대문구 충정로) 0.3% (w/w) 등을 각각 혈장에 첨가하였다. 상온(25℃)에서 혈장의 포도당 함량과 pH가 일정한 수준에 도달할 때까지 진공기에서 혼들면서 30분 간격으로 측정하였다. 혈장 포도당 함량은 glucose test strip에 시료 한 발 묶음을 빨아들이고 glucose meter (One Touch Basic Lifescan, Johnson-Johnson Co., Milpitas, CA, USA)로 측정하였다. 그리고 혈장의 pH는 pH meter (pH I 40, Beckman Instruments, Inc., Fullerton, CA, USA)를 사용하여 Scott의 방법으로 측정하였다.

포도당이 제거된 혈장의 단백질 변화를 증가시켜서 실험을 55℃의 중탕에서 modified pan drying method(26)로 진행하였다. 건조한 후 막차사발(mortar와 pestle)을 이용하여 곡게 마쇄하였다. 마쇄된 혈장분을 plastic 병에 넣어 실험 메개자 상온(25℃)에서 저장하였다.

육제와 태지 혈장분의 색깔

육제와 태지 혈장분의 색깔은 Tri-Stimulus Colorimeter (Model JC 801, Color Techno System Corp, Tokyo, Japan)를 이용하여 2주 간격으로 8주까지 측정하였다. 색깔은 "L" (밝음), "a" (붉음) 그리고 "b" (도량) 값으로 나타내었다.

육제와 태지 혈장분의 biuret 단백질 함량

혈장분의 단백질 함량을 2주 간격으로 8주까지 biuret reactive protein method(27)로 측정하였다. 혈장분 20 mg을 중류수 4.5 mL에 넣은 후 6%의 NaOH 용액 4.5 mL과 혼합하였다. 이 용액을 3%의 NaOH용액 0.75 mL와 20%의 CuSO, H2O용액 0.25 mL과 혼합한 후 1분간 식하게 혼들어 10분간 정격시켰다. 시료를 1,816 x g로 15분간 원심분리하여 천천히 수산화구리 (cupric hydroxide, Cu(OH)2)를 제거한 후 상아액의 absorbance는 560 nm에서 측정하였다. Protein concentration standard curve를 이용하여 측정된 혈장 powder의 absorbance에 해당하는 단백질의 농도를 percent (%)
로 나타내었다.

육계와 돼지 혈장분의 응해도

혈장분 응해도는 Thistle 등[6]의 방법에 따라 2주 간격으로 8주까지 측정하였다. 혈장분 2.2 g을 10% KCl 100 mL이 들어있는 삼각 flask에서 녹였다. 상온의 shaking incubator에서 삼각 flask를 120 cycles/min로 1시간 동안 혼들어 주었다. 시료물 Advantec No. 1 filter paper (Toyo Roshi Kaisha, Ltd., Japan)로 여과했다. 여과된 crucible에 여과액을 10 mL씩 넣었다. Crucible 을 110°C의 drying oven에 넣고 16시간 동안 건조시켰다. Crucible에서 건조된 시료의 무게를 계산하여 얻었다. 건조된 시료에서 KCl의 무게(1 g)를 빼 뒤 혈장 무게(2.2 g)로 나누고 100을 곱함으로써 percent (%) 응해도를 얻었다.

육계와 돼지 혈장분의 기포력

혈장분의 기포력을 Khan 등[7]의 방법에 따라 2주 간격으로 8주까지 측정하였다. Graduated cylinder (100 mL)에 혈장분 750 mg과 25 mL의 deionized water를 넣었다. 각각의 시료를 2 cycle/sec로 1분간 혼들었다. 혼들어준 각각의 시료를 2분간 정지시켰다. 시료의 전체 부피와 액상의 부피를 측정하였다. 시료의 전체 부피에서 액상의 부피를 빼어 기포(foam)의 부피를 얻었다.

육계와 돼지 혈장분의 pH

혈장분의 pH는 pH meter (pH I 40, Beckman Instruments, Inc., Fullerton, CA, USA)를 사용하여 Scott[8]의 방법으로 2주 간격으로 8주까지 측정하였다. 비커(25 mL)에 혈장 powder 2.5 g를 넣고 중류수 7.5 mL을 첨가한 후 잘 녹도록 저어 주었다. 상온에서 pH meter (Ati Orion, Boston, MA, USA, Model 520A)를 이용하여 시료의 pH를 4번씩 측정하였다.

통계처리

수집된 data는 SAS (Statistical Analysis System)의 GLM (General Linear Model)에 따라 처리되었다[28]. 유의성 검정이 필요하면 Duncan's new multiple range test[29]를 이용하였다.

결과 및 고찰

육계와 돼지 혈장분의 색깔

Glucose oxidase나 효모를 첨가한 육계와 돼지 혈장

| Table 1. Hunter color values of broiler plasma powder as affected by desugargization and storage at room temperature[3-5] |
|--------------------------|-----------------|-----------------|
| | Control | Desugargarized |
| | By glucose oxidase (10 units/g) | By yeast (0.3% w/w) |
| Storage time (week) | "L" values | "a" values | "b" values |
| | | | |
| 0 | 59.13Ce | 65.98Aa | 60.69Be |
| 2 | 61.96Bb | 61.87Cd | 67.70Ab |
| 4 | 61.72Cc | 61.87Bd | 67.50Ad |
| 6 | 62.01Ca | 64.01Bb | 67.59Ac |
| 8 | 61.61Cd | 62.64Bc | 67.80Aa |
| | | | |
| 0 | 4.54Ae | 1.39Cd | 3.04Be |
| 2 | 5.65Ac | 2.02Cc | 4.43Ba |
| 4 | 5.82Ab | 2.23Ca | 3.59Bb |
| 6 | 5.45Ad | 2.11Cb | 3.34Bd |
| 8 | 6.59Aa | 2.10Cb | 3.42Bc |

5Means of 4 replications.

[2] ABC Means within a row not followed by the same letter are significantly different (P<0.05).

[3-5] abcdMeans within a column not followed by the same letter are significantly different (P<0.05).

의 포도당 농도는 시간이 지남에 따라 감소되었고 효모(0.3%, w/w)의 첨가가 glucose oxidase (10 units/g)보다 효과적이었다[30]. 난백분에 있는 포도당을 제거하여 Maillard 반응을 억제시킴으로써 찬장의 난백분을 생산하는 것처럼[31,32] 육계와 돼지 혈장분의 포도당을 제거함으로써 Maillard 반응의 억제가 가능하여 달려진다.

혈당 제거와 저장 기간이 육계와 돼지 혈장분의 색깔에 영향을 미치는 것으로 나타났다. 육계 혈장분은 저장 기간중 돼지 혈장분보다 낮은 "L" 값과 나타내었다. 혈장분의 종류와 혈당 제거 방법과의 상관없이 실험기간 동안 혈당이 제거된 혈장분은 해당 대조구보다 일반적으로 "L" 값이 높았으며 "a" 값과 "b" 값은 낮았다(P<0.05) (Table 1 and 2). 이는 혈당 제거에 따른 높은 Maillard 반응의 진행에 기인하는 것으로 여겨진다. 포도당이 제거되지 않은 난백분에 관한 Lee 등[31] 및 Sheen 등[30] 그리고 Kato 등[32,33]의 보고와도 일치한다.

육계와 돼지 혈장분의 biuret 단백질 함량

Albumin이나 globulin과 같은 혈청 단백질의 함량을
Table 2. Hunter color values of porcine plasma powder as affected by desugargization and storage at room temperature

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugargized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>L values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66.93Cd</td>
<td>69.56Aa 67.75Bb</td>
</tr>
<tr>
<td>2</td>
<td>67.02Cc</td>
<td>69.08Ac 67.09Bd</td>
</tr>
<tr>
<td>4</td>
<td>66.76Ce</td>
<td>69.37Ab 67.65Bc</td>
</tr>
<tr>
<td>6</td>
<td>67.43Ba</td>
<td>68.94Ae 66.97Cc</td>
</tr>
<tr>
<td>8</td>
<td>67.35Cb</td>
<td>69.02Ad 68.40Ba</td>
</tr>
<tr>
<td>0</td>
<td>a" values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.18Aa</td>
<td>1.04Cd 2.62Ba</td>
</tr>
<tr>
<td>2</td>
<td>4.49Ab</td>
<td>1.30Cb 2.55Bb</td>
</tr>
<tr>
<td>4</td>
<td>4.27Ad</td>
<td>1.08Cc 2.01Bc</td>
</tr>
<tr>
<td>6</td>
<td>4.11Ac</td>
<td>1.10Cc 2.28Bc</td>
</tr>
<tr>
<td>8</td>
<td>4.37Ac</td>
<td>1.39Ca 2.17Bd</td>
</tr>
<tr>
<td>0</td>
<td>b" values</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.33Ab</td>
<td>14.96Ce 16.29Bd</td>
</tr>
<tr>
<td>2</td>
<td>20.97Ad</td>
<td>15.15Cd 16.51Bb</td>
</tr>
<tr>
<td>4</td>
<td>20.90Ac</td>
<td>15.40Cb 16.27Bb</td>
</tr>
<tr>
<td>6</td>
<td>21.11Ac</td>
<td>15.41Ca 16.44Bb</td>
</tr>
<tr>
<td>8</td>
<td>21.37Aa</td>
<td>15.31Cc 16.33Bc</td>
</tr>
</tbody>
</table>

1) Means of 4 replications.
2) ABC Means within a row not followed by the same letter are significantly different (P<0.05).
3) abcde Means within a column not followed by the same letter are significantly different (P<0.05).

측정하여 biuret reactive protein method가 이용되고 있다.30) 측정 또는 혈당 제거 방법과는 상관없이 탈당
된 모든 시료의 단백질 함량은 상온 저장 중 초기부터 실험기간 중까지 해당 대조군 보다 매우 높았다. 그러
고 모든 시료로 단백질 함량은 저장 기간이 경과함수
록 감소하였다(P<0.05)(Table 3과 4). Biuret reactive protein method에서는 cupric ion이 peptide 질소의 비
공유 전자쌍이거나 물에 있는 산소의 비공유 전자쌍과 결
합하여 색을 띄게 된다.30) Maillard 반응에서는 amino acid의 amino group과 당의 hydroxyl group이 결합하기
때문에 cupric ion이 결합할 질소가 줄어든다. Biuret 단
백질 함량은 용해도와 관계가 있는 것으로 여겨지는
데 탈당된 시료의 상온 저장 중 단백질 용해도는 대조
구보다 높게 나타났다(Table 5와 6).

육체와 대지 혈장분의 용해도
Glucose oxidase나 효모를 첨가하여 혈장 포도당이
제거된 육체와 대지 혈장분의 용해도는 실험기간 동안
해당 대조군 보다 항상 높았다. 육체와 대지 혈장분 용
해도는 측정이나 탈당과 상관없이 모든 시료에서 저장
기간이 지남에 따라 감소하였다(P<0.05)(Table 5와 6).
대조군의 용해도 감소는 Kato 등31,32)의 단백분 용해도
감소와도 일치하였다. 용해도 감소는 Maillard 반응에
의한 albumin과 globulin의 변성에 기인하는 것으로 여

Table 3. Biuret reactive protein content of broiler plasma powder as affected by desugargization and storage at room temperature

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugargized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>47.48Ca</td>
<td>88.76Bd 96.92Aa</td>
</tr>
<tr>
<td>2</td>
<td>32.48Cb</td>
<td>86.88Aa 71.96Bb</td>
</tr>
<tr>
<td>4</td>
<td>30.12Cb</td>
<td>80.52Ab 66.99Bc</td>
</tr>
<tr>
<td>6</td>
<td>31.72Cb</td>
<td>78.48Ab 63.14Bd</td>
</tr>
<tr>
<td>8</td>
<td>26.96Cb</td>
<td>68.14Ac 56.75Bd</td>
</tr>
</tbody>
</table>

1) Means of 4 replications.
2) ABC Means within a row not followed by the same letter are significantly different (P<0.05).
3) abcde Means within a column not followed by the same letter are significantly different (P<0.05).

Table 4. Biuret reactive protein content of porcine plasma powder as affected by desugargization and storage at room temperature

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugargized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>53.66Ba</td>
<td>88.96Aa 64.32Bb</td>
</tr>
<tr>
<td>2</td>
<td>40.54Cb</td>
<td>79.29Ab 65.16Bb</td>
</tr>
<tr>
<td>4</td>
<td>36.50Bc</td>
<td>76.50Ac 62.99Bab</td>
</tr>
<tr>
<td>6</td>
<td>32.20Bc</td>
<td>65.54Ad 59.63Bb</td>
</tr>
<tr>
<td>8</td>
<td>28.46Cc</td>
<td>55.06Ad 46.10Bc</td>
</tr>
</tbody>
</table>

1) Means of 4 replications.
2) ABC Means within a row not followed by the same letter are significantly different (P<0.05).
3) abcde Means within a column not followed by the same letter are significantly different (P<0.05).

Table 5. Solubility of broiler plasma powder as affected by desugargization and storage at room temperature

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugargized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>43.52Ca</td>
<td>90.83Aa 67.43Bb</td>
</tr>
<tr>
<td>2</td>
<td>34.29Cab</td>
<td>73.01Ab 60.57Bb</td>
</tr>
<tr>
<td>4</td>
<td>33.51Cab</td>
<td>61.89Ac 50.66Bb</td>
</tr>
<tr>
<td>6</td>
<td>21.65Bc</td>
<td>47.40Ad 47.84Ab</td>
</tr>
<tr>
<td>8</td>
<td>29.69Bc</td>
<td>53.63Acd 48.52Ab</td>
</tr>
</tbody>
</table>

1) Means of 4 replications.
2) ABC Means within a row not followed by the same letter are significantly different (P<0.05).
3) abcde Means within a column not followed by the same letter are significantly different (P<0.05).
Table 6. Solubility of porcine plasma powder as affected by desugarization and storage at room temperature\(^{1,2}\)

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugarized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>56.06Ca</td>
<td>89.45Aa</td>
</tr>
<tr>
<td>2</td>
<td>48.52Ca</td>
<td>72.30Ab</td>
</tr>
<tr>
<td>4</td>
<td>17.79Ch</td>
<td>67.73Aabc</td>
</tr>
<tr>
<td>6</td>
<td>17.84Ch</td>
<td>66.00Ac</td>
</tr>
<tr>
<td>8</td>
<td>20.95Bb</td>
<td>65.89Aa</td>
</tr>
</tbody>
</table>

\(^1\)Means of 4 replications.
\(^2\)ABC Means within a row not followed by the same letter are significantly different (P<0.05).

Table 7. Foaming capacity of broiler plasma powder as affected by desugarization and storage at room temperature\(^{1,2}\)

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugarized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>27Ba</td>
<td>31ABa</td>
</tr>
<tr>
<td>2</td>
<td>9Cb</td>
<td>24Bb</td>
</tr>
<tr>
<td>4</td>
<td>6Bb</td>
<td>29Aab</td>
</tr>
<tr>
<td>6</td>
<td>6Bb</td>
<td>34Aa</td>
</tr>
<tr>
<td>8</td>
<td>8Bb</td>
<td>29Aab</td>
</tr>
</tbody>
</table>

\(^1\)Means of 4 replications.
\(^2\)ABC Means within a row not followed by the same letter are significantly different (P<0.05).

Table 8. Foaming capacity of porcine plasma powder as affected by desugarization and storage at room temperature\(^{1,2}\)

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugarized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>27Aab</td>
<td>28Aa</td>
</tr>
<tr>
<td>2</td>
<td>24Bb</td>
<td>27Aa</td>
</tr>
<tr>
<td>4</td>
<td>28Bb</td>
<td>28Ba</td>
</tr>
<tr>
<td>6</td>
<td>28Aab</td>
<td>31Aa</td>
</tr>
<tr>
<td>8</td>
<td>30Aa</td>
<td>31Aa</td>
</tr>
</tbody>
</table>

\(^1\)Means of 4 replications.
\(^2\)ABC Means within a row not followed by the same letter are significantly different (P<0.05).

저작권에 따른 표지 및 텍스트 변경 없이 제공된 정보를 바탕으로 추천사항을 작성하였습니다.

저작권에 따른 표지 및 텍스트 변경 없이 제공된 정보를 바탕으로 추천사항을 작성하였습니다.
Table 9. pH of broiler plasma powder as affected by desugarization and storage at room temperature

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugarized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>8.41Bb</td>
<td>7.66Cc</td>
</tr>
<tr>
<td>2</td>
<td>7.95Bb</td>
<td>7.61Cb</td>
</tr>
<tr>
<td>4</td>
<td>7.94Bb</td>
<td>7.62Cb</td>
</tr>
<tr>
<td>6</td>
<td>7.90Bb</td>
<td>7.56Cc</td>
</tr>
<tr>
<td>8</td>
<td>7.77Bd</td>
<td>7.50Cd</td>
</tr>
</tbody>
</table>

1) Means of 4 replications.
2) ABC Means within a row not followed by the same letter are significantly different (P<0.05).
3) abcd Means within a column not followed by the same letter are significantly different (P<0.05).

Table 10. pH of porcine plasma powder as affected by desugarization and storage at room temperature

<table>
<thead>
<tr>
<th>Storage time (week)</th>
<th>Control</th>
<th>Desugarized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>By glucose oxidase (10 units/g)</td>
<td>By yeast (0.3% w/w)</td>
</tr>
<tr>
<td>0</td>
<td>9.02Cc</td>
<td>9.70Ab</td>
</tr>
<tr>
<td>2</td>
<td>9.14Cc</td>
<td>9.92Aa</td>
</tr>
<tr>
<td>4</td>
<td>9.30Cc</td>
<td>9.46Bc</td>
</tr>
<tr>
<td>6</td>
<td>8.91Ca</td>
<td>9.45Ac</td>
</tr>
<tr>
<td>8</td>
<td>8.75Cd</td>
<td>9.43Ac</td>
</tr>
</tbody>
</table>

1) Means of 4 replications.
2) ABC Means within a row not followed by the same letter are significantly different (P<0.05).
3) abcd Means within a column not followed by the same letter are significantly different (P<0.05).

와 같은 경제적인 방법으로 혈장 포도당을 제거하였 다. 이렇게 제거한 혈장의 포도당을 제거한 후 혈장을 건조시킨 혈장분의 색깔, biuret 단백질 함량, 응해도 그리고 기포를 증진시킬 수 있었다.

요 약

GOD (glucose oxidase)나 제형용 효모를 사용하여 포도당이 제거된 육제와 대비 혈장분의 상온 저장중 색깔, biuret 단백질 함량, 응해도, 기포로와 pH의 변화를 조사하였다. 혈장분의 준비와 혈장 제거 방법과는 상관없이 실험기간 동안 혈장이 제거된 혈장분은 혈당 대조군보다 "L" 값이 갑자기 높았으며 "a" 값과 "b" 값은 낮았다(P<0.05). 축종 또는 혈장 제거 방법과는 상관없이 탈당된 모든 시료의 단백질 함량과 응해도 는 상온 저장중 혈당 대조군보다 항상 높았고 저장 기간이 경과함수록 감소하는 경향을 보였다(P<0.05). 대체적으로 탈당된 육제와 대비 혈장분 기포로는 혈당 대조군과 비슷하거나 높았다. 그러나 대비 혈장분의 기포로는 육제 혈장분과는 다르게 실험기간 동안 탈 당된 대비 혈장분과 상응하는 대조군을 큰 차이를 나타내지 않았다(P<0.05). 육체 대조군과 GOD으로 혈장 포도당을 제거한 육체 혈장분의 pH는 저장기간이 지남에 따라 감소하지만 효모로 포도당을 제거한 육체 혈장분과 모든 대비 시료의 pH는 실험 기간중 증가하였다가 감소하였다. GOD로 포도당을 제거한 육체 혈장분이 해당 육체 시료보다 낮은 pH 값을 보인 반면 대비 혈장분에서는 대조군과 상응하는 실험군보다 항상 낮은 pH 값을 나타내었다(P<0.05). 육체와 대비 혈장의 포도당을 제거한 후 혈장을 건조시켜 혈장분의 색깔, biuret 단백질 함량, 응해도 그리고 기포를 증진시킬 수 있었다.

감사의 글

본 연구는 농림부에서 시행한 농림특성연구사업으로 이루어진 연구 결과의 일부이며 지원에 감사드립니다. 그리고 통제처리에 도움을 주신 육군시관학교 수학과 박사님께도 감사드림니다.

문헌

7. Siegel, D.G., Church, K.E. and Schmit, G.R.: Gel structure of non-meat proteins as related to their ability to bind meat pieces. J. Food Sci., 44, 1276-1279 & 1284 (1979)

