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ABSTRACT

We investigate dynamical evolution of globular clusters with multi-mass component under the Galactic tidal field.
We compare the results with our previous work which considered the cases of single-mass component in the globular
clusters. We find the followings: 1) The general evolutions are similar to the cases of single-mass component. 2)
There is no evidence for dependence on the orbital phase of the cluster as in the case of single-mass component. 3)
The escape rate in multi-mass models is larger than that in the single-mass models. 4) The mass-function depends
on radius more sensitively in anisotropic models than in isotropic models.
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I. INTRODUCTION

The dynamics of globular clusters has been stud-
ied for long time, since stars within a given cluster
are coeval and have ages much larger than orbital pe-
riod around the Galaxy. On these time scales, clus-
ters with 1058 stars undergo significant internal evo-
lution and the Galactic tide affects both the structure
and evolution of the outer regions. It has been sug-
gested that both internal processes and the tidal in-
teraction with the Galaxy have determined not only
the dynamical evolution of globular clusters (Ostriker,
Spitzer, & Chevalier 1972; Spitzer & Chevalier 1973)
but also their survival probability (Fall & Rees 1977;
Aguilar, Hut, & Ostriker 1988; Ostriker, Binney, &
Saha 1989). For these theoretical reasons, the anal-
ysis of the tidal evolution of globular clusters is very
important. There have been several previous attempts
to investigate the tidal evolution of globular clusters
with limited scheme { Keenan & Innanen 1975; Spitzer
& Shull 1975; Aguilar & White 1985; Seitzer 1985).
More realistic approach has been adopted by Oh, Lin,
& Aarseth (1992, hereafter Paper I) with single-mass
component model. Their scheme utilizes Fokker-Planck
approach as well as direct numerical integration of re-
stricted three-body problem. Oh & Lin (1992, hereafter
Paper II) presented the results which are obtained with
this numerical method for various model parameters.
After many observations of mass functions in globular
clusters, especially after the Hubble Space Telescopes
are launched (McClure et al. 1986 ; Richer et al. 1990 ;
Capaccioli, Ortolani & Piotto 1991 ; Piotto 1991 ; Ca-
paccioli, Piotto & Stiavelli 1993}, multi-mass models
are investigated. Lee, Fahlman & Richer (1991) exam-
ined the evolution of the mass function by integrating
the Fokker-Plank equation with a steady Galactic tidal
field. They showed that highly evolved clusters have a
significant flattening of the mass function. Later Lee
& Goodman (1995) calculate the evaporation rates for

broad stellar mass function in tidally limited globular
clusters and found that the fraction of the cluster mass
lost per half-mass relaxation time is roughly constant
and a significant fraction of the present-day Galactic
cluster system will disappear within the next Hubble
time. There are also direct N-body simulations for
multi-mass models without tidal field (Giersz & Heggie
1996) and with tidal field (Giersz & Heggie 1997; Ves-
perini & Heggie 1997). Giersz & Heggie (1996) consid-
ered the effect of binaries and the circular orbit around
the Galaxy of point mass. They found an increase in
the mean stellar mass due to preferential escape of low
mass stars and similar escape rates as Lee & Goodman
(1995). But the effect of dormant binaries is turned out
to be smaller in tidally limited systems than in isolated
systems. Vesperini & Heggie (1997) investigated the
evolution of multi-mass models with a power-law initial
mass function of globular clusters driven by relaxation,
stellar evolution and disk shocking, and including the
effects of the tidal field of the Galaxy. Their results
show that the global mass function becomes flatter de-
pending on the fraction of the initial mass lost. And
the mass function near the half-mass radius is least af-
fected by mass segregation, but the mass function in
the outer region becomes flatter than the initial mass
function.

In this paper we consider the multi-mass component
model of globular clusters. The Galactic tide and dif-
fusion process are imposed. Some of the models are
done for the eccentric orbits as well as circular orbits
to consider the effect of time dependent tidal field. We
divide the cluster into an inner region where two-body
relaxation is important, and an outer region where the
Galactic tide provides the most important dynamical
perturbation as we did in Paper I. This boundary is
referred as the critical radius.

For simplicity, we assume that the gravitational force
inside the critical radius is dominated by the cluster.
When a star crosses the critical radius into the inner
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region, we map its position according to the predicted
trajectory past pericenter to the exit phase from the
inner region. During the excursion through this dense
inner region, perturbations due to two-body relaxation
are approximated self-consistently as diffusion through
the three-dimensional velocity space. The diffusion co-
efficients are determined using a Fokker-Planck treat-
ment for each mass component. From these diffusion
coefficients, we compute the energy change during an
orbital passage through the inner region. The effect
of these perturbations are added to the velocity of the
stars. Once a star moves outside the critical radius, the
stellar density is too low to provide significant two-body
relaxation effects. In this region, we integrate the equa-
tions of motion numerically, using a fourth-order force
polynomial (Aarseth 1985) and include both the cluster
potential and the Galactic tidal field. We use the con-
servative criterion (ten times of initial theoretical tidal
radius) to remove the escapers because not only there
is a uncertainty in tidal radius (Allen & Richstone 1988
; Ross, Mennim & Heggie 1997), but also we want to
examine the mass function beyond the tidal radius.

Although time dependent tide and logarithmic po-
tential for the Galaxy are adopted, several factors have
been omitted including the disk shocking. For both
inner and outer regions, we assume the cluster poten-
tial to be spherically symmetric and constant in time.
The stellar distribution in the outermost regions of the
cluster is unlikely to be spherically symmetric; how-
ever, most of the mass remains well inside this region.
Although there is mass loss from the cluster as stars
escape, this will have negligible effects on the cluster
potential over a Galactic orbital time scale, especially
for the case of low escape rate. Also the influence of
primordial binaries are neglected. They don’t seem to
have an important role in the tidal stripping process
(Giersz & Heggie 1997).

The orbital kinematics, equations of motion, mass
function, distribution function, calculation of diffusion
coefficients and velocity perturbations are described in
Section II. In Section III, the cluster models, potential
of the cluster and the Galaxy are described. Initial
parameters of the models are discussed in Section IV.
We present results of the simulations and discuss those
result in Section V.

II. ORBITAL KINEMATICS
(a) Equations of Motion

The size of globular clusters is typically two orders of
magnitude smaller than their distance from the Galac-
tic center. The stellar velocity dispersion of the clus-
ters is also about an order of magnitude smaller than
the characteristic orbital velocity around the Galaxy.
If the evolution of the cluster stars is computed in an
inertial frame with respect to the Galactic center, the
accumulated numerical truncation errors would signif-
icantly jeopardize the accuracy of the results. We find

it advantageous to carry out the numerical computa-
tion in a comoving frame such that the guiding cen-
ter of the frame is centered on the cluster core. Thus
the frame corotates with the instantaneous orbital fre-
quency where the azimuthal phase is defined with re-
spect to the direction of the Galactic center. Conse-
quently, this rotation rate of the comoving frame is not
constant for the eccentric orbit.

We use the equations of motion for‘individual stars
and the guiding center in the Appendix of Paper I in
our simulations.

(b) Mass Function

The observation of the initial mass function in glob-
ular clusters is not easy because high mass stars turned
into white dwarf which is difficult to see. And dynam-
ical evolution of globular clusters lead the significant
amount of evaporation during their life time (Lee &
Goodman 1995). Therefore it is difficult to get the mass
function from the present day observations. However
Salpeter type power law can be adopted. This power-
law mass function is defined by dN = C,m~%d(logm),
if NV is the number of stars in a mass (m) bin. There
is no particular reason to use a power-law mass func-
tion, but it is a simple form and the range of masses
of interest sufficiently small that the exact form does
not matter very much. Gunn & Griffin (1979) explored
the power index for the mass function of M3. And we
adopt the index of 1.3 among their values.

In the models we use, the masses (m) are binned in
five intervals of 0.179 in the range of logm = -0.06 ~
-0.950. If M is the total mass in a bin in logm, and the
upper and lower limits of the bin masses-are m; and
m ;41 respectively, then the mass M; in the bins are

mjt1
M; = C,m~*d(logm)
_ Co 1-z m] 1-2z
S —.z‘)lnIOmj“{1 (mj+1) J
(mj+1 > my) 1)

where C, is the constant which is determined by a given
total mass. Five mass classes are adopted from the
average mass in each bin. So the maximum mass ra-
tio between high and low mass stars is Mmez /Mpmin =
5.153. The mass range, average mass, total mass ratio
(M /M,) and relative numbers (N;/N;) in each bin are
listed in Table 1.

(¢) Distribution Functions

In order to determine the cluster potential and eval-
uate diffusion coeflicients, we need to specify a phase
space distribution function for the stars. King (1966)
adopted a simple distribution function for isotropic
velocity dispersion and the distribution function for
anisotropic velocity dispersion (Gunn & Griffin 1979)
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Table 1. Mass range, bin mass, relative total mass and relative numbers
bin mass range(logm) average mass (Mg) M;/M, N;/Ny
0.7245

1 -0.060 ~ -0.239 O 154 0.0527
2 -0.239 ~ -0.416 0.4809 0.174  0.0898
3 -0.416 ~ -0.594 0.3192 0.197  0.1530
4 -0.594 ~ -0.772 0.2119 0.223  0.2606
) -0.772 ~ -0.950 0.1406 0.252  0.4400

in a mass bin j is

fi(B,J) = Cjexp(—4; % |2r})[exp(- A; E) ~ 1],
where E and J are the local orbital energy and angular
momentum of the stars respectively, C; is the normal-
ization constant, A; is the constant for dimensionless

in exponential and r, is the anisotropy radius. Then
the number distribution function is

9i(E,J) = f;(E,J)/m;. (3)

And these distribution functions can be written in (r,v)
space as

where 7, and r,, are pericenter and apocenter dis-
tances, and v, is the radial velocity. The change of
energy, AE;, in a single encounter is given by equation
(5-24) of Spitzer (1962) as
1 2, 1 2

AE; = vAv” + ‘z‘(Av”) + ‘é(AUJ_) , (8)
where v is the velocity, and Av; and Av, are the col-
lisionally induced changes of v in the directions par-
allel and perpendicular, respectively, to the original
trajectory. Because of the nearly symmetric mass dis-
tribution, the mean value of AE; is of the order of
< (Av”)2 >. If only dominant terms are considered in
equation (8), the mean value of (AE;)? becomes of the

fi(r,v) = Cjexp(=fmyvir? [2r]) x (4) order of v < (Av))? >. Thus as in Paper I the ratio is
lexp{—B(0.5m;v* + mjy(r))} ~ 1],
’ ] €1,j < AE; > At V< (Avy)? > At )
gj(r,v) = fi(r,v)/m;, (5) g]‘ ~ T BES A ~ " < 1.

where 8 = A;/m;, v, is the transverse velocity of the
star and ¢ is the potential. If we measure velocities
and radii in terms of the central velocity dispersion
and core radius, respectively, and scale the potential by
the square of central velocity dispersion, then equations
(2), (3), (4) and (5) can be converted into dimensionless
forms. After the density is obtained by integrating the
above distribution function in velocity space, we find
the potential by solving the Poisson equation (Gunn &
Griffin 1979).

(d) Diffusion Coefficients

Two-body encounters do not introduce significant
changes in the stellar orbital angular momentum be-
cause the symmetry in the distribution about the tra-
jectories leads to cancellation of the perturbations in
transverse directions. This symmetry is preserved on
all but the largest scales in the clusters. However,
during one orbital period, At, two-body 1nteract10ns
induce energy changes for one mass component e =

e it €2 ; (Spitzer & Shapiro 1972), with

9)
We can therefore neglect the ¢, ; contribution to the
energy change in computing the tidal evolution of the
outer regions of the cluster. In general, however, contri-
bution due to €; ; may lead to core collapse and there-
fore must be taken into account in computing the in-
ternal evolution of globular clusters.

As in Paper I, we average the distribution function
over a range of angular momentum and the energy per-
turbation for a given mass class (j) is the sum of per-
turbations from all the mass classes (i’s). Following
the equation (A4b) of Shapiro and Marchant (1978),
the energy perturbation is

5

[ 7]
& ;(E,J) = Z Tj- X

=1

EBPE_ 0—, U ! F = n,3 !
{ /5 ugdf[/,; 5(BE + [ e 2B 1,00

P

where oy; = 128x2m?1nAj;, Aji = 2yM;i/(m; + m,)
v = 0.4, M; is the total mass in mass class 1, zg =

dr ([ + WEV/IE + WO, u = 2B+ 2W ()] s

j =2 <AE; > — 6 ’
eL.d /,p ‘ v’ ©) the total velocity, u¢ = [2E + 2W(£) — J?/€2]Y/2, and
W (£) is the dimensionless potential energy at dimen-
2 =9 Tap < (AE;)? > dr e sjox}less ?adius 13 . In our calculat%o‘ns, we t?.ke the upper
2,j , v, ‘limit of integration to be the critical radius. To speed

P

up the numerical calculation these diffusion coefficients
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are tabulated for an appropriate range of energy and
angular momentum for each mass class, and these tab-
ulated values are interpolated in the simulation. This
diffusion coefficient in lowest mass class is about 10%
larger than in highest mass class.

(e) Velocity Perturbations

To determine the velocity perturbations in mass
class j during one orbital period, At, we find from equa-
tions (7) and (8)

dr

r

&= 2/ < (AE;)? >
Tp

=< (AE]‘)2 >At=v? < (A’U”)2 > At. (11)

Following the prescription by Spitzer and Thuan (1972),
we introduce perturbations Av, and Av,; to the radial
and transverse velocities such that

1/2 Uy €2V

= 2> At =
Av X {< (A'U”) > } " X o2 (12)
Av, = X {< (Avy)? > At} % = X%, (13)

where X in equations (12) and (13) denotes random
numbers from a Gaussian distribution with zero mean
and unit variance.

The perturbations in the orbital angular momentum
of the stars is neglected, i. e. contribution from AJ is
ignored. This approximation is adequate for the rep-
resentative halo stars which we are studying because
they primarily interact with stars in cluster core where
the density is relatively large. When these stars en-
ter the core region, they are on nearly parabolic orbits
such that most of the encounters may be regarded as
distant encounters. In the cluster core, the background
stellar density is essentially homogeneous and velocity
distribution approximately isotropic for all encounters
including the encounters with impact parameters com-
parable to the core radius. Due to the lack of any
effective torque, |Av, /Avy)| << 1. For the analysis of
interaction between stars in the cluster core, the con-
tribution from Av,; must be taken into account.

III. CLUSTER MODELS

Two particular models of isotropic and anisotropic
velocity dispersions are used to determine the cluster
potential and phase space distribution function. We
adopt the units G = 1, central density p, = 1 and core
radius r, = 1. This gives the central velocity dispersion
of the cluster as v, = 2/7/3.

(a) Internal Kinematic Models of the Cluster

In all our computations, we use two sets of cluster
models: an isotropic model and an anisotropic model.
The isotropic model is generated from the King dis-
tribution function with a central potential Wy = 10.56.

The outer cutoff radius where the distribution function
[eq. (2)] vanishes is about 56 r.. The half-mass ra-
dius in this isotropic case is 9.91 r.. When these values
are appropriately scaled, the characteristic dynamical
time scale, 7., is 2.32 x 108(R3/M5)'/? yrs, where R,
is the core radius in units of pc and Mj5 is the clus-
ter mass in units of 105Mg. The anisotropic model
is generated from the King-Michie distribution func-
tion with Wy = 9.385 and r, = 5.4. The outer cutoff
radius is about 196 r.. The half-mass radius in this
anisotropic case is 14.13 r.. The characteristic dynam-
ical time scale is 3.95 x 10%(R3/M5)!/2 yrs. The struc-
ture of many globular clusters can be approximated
by these models (Peterson & King 1975; Illingworth &
Nlingworth 1976; Webbink 1985).

We choose the critical radius to be 10 r. and 40 r. in
the isotropic and anisotropic cases, respectively. Inte-
rior to these radii, the Galactic tidal force contributes
less than 0.8% of the gravitational force. The mass
inside the critical radius is 50.4% of total mass for
the isotropic case and 80.7% for the anisotropic case.
We generate an initial distribution of 10000 stars be-
tween the critical radius and cutoff radius. If the total
mass of the globular cluster is 1.126 x 10° M, and the
stellar distribution is extrapolated to the cluster core,
these number in the outer regions correspond to a to-
tal number of 2.582 x 10% stars for the isotropic case
and 1.134 x 10° stars for the anisotropic case. And
the numbers of particles(n;) in the simulations and the
corresponding real number of stars(n}) in isotropic and
anisotropic cases are listed in Table 2.

(b) Approximations of the Cluster’s Potential
and Trajectory

We now introduce several simple functions to ap-
proximate the acceleration and potential of the cluster
which are assumed to be fixed during the evolution due
to a small number of escaping stars. Qutside the criti-
cal radius, where the orbits are integrated directly, we
approximate the cluster acceleration, g, by

—2—&'— + ¢, & < cutoff radius;
£+ b

g} & > cutoff radius,

)

9= (14)

Table 2. Number of particles and corresponding
number of stars

bin isotropic anisotropic
n;  n5(10Y) n;  nf(10%)
147 0.38 43 0.05
638 1.65 321 0.36
1451 3.75 1052 1.19
2773 7.16 2660 3.02
4991 12.9 5924  6.72

[ I - JCl
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where a;,b;,¢; and d; are constants, i = 1 for the
isotropic case, ¢ = 2 for the anisotropic case, and their
values are given in Table 3. These approximations lead
to the relative error less than 1.5%, which is adequate
for the present purpose.

After integration the equation (14) we get the ap-
proximate form of the potential W (£)

W(e) = atan~1(b€) + c;™ +d;, £ < cutoff radius;
10, £ > cutoff radius,

(15)
where a;, b;, ¢;,d; and m,; are constants, i = 3 for the
isotropic case, ¢ = 4 for the anisotropic case, and their
values are also given in Table 3.

Inside the critical radius, orbital energy and angular
momentum are conserved in the absence of two-body
relaxation processes. Thus, the stars leave the critical
radius with the same speed as they enter but the di-
rection of radial motion is changed. Instead of detailed
computation, an orbit is easily determined when the
change in the trajectory angle, Ag, due to pericenter
passage is specified. For a star with energy, E, and
angular momentum, J,

Ecrit J d§
AY(E,J) =2 —_—
®9=2 [ e
Eerit de
=9 , 16
/Ep EV2AE+W(©)] - J2/¢? (16)

where &5 is the critical radius. To speed up the nu-
merical calculation the angle changes are tabulated for
an appropriate range of energy and angular momentum
as in the case of the diffusion coefficient, and these tab-
ulated values are interpolated in the simulation for the
trajectory.

(c) Initial Cluster Size and Orbital Parameters

We consider two types of orbits. In one case, the
cluster is in a circular orbit around the Galaxy. The
length scale is set such that the initial cutoff radius
(56 and 196 r. in the isotropic and anisotropic cases
respectively) to be the theoretical tidal radius of the
cluster. In the second type of orbits, the cluster is in an
orbit with eccentricity e = 0.5. Here, we set the initial
cutoff radius to be that of the theoretical tidal radius
at perigalacticon. Assuming a logarithmic potential for
the Galaxy and following King’s (King 1962) method,
the tidal radius is give in the eq. (23) in Paper I.

Although this definition of tidal radius is uncertain
and controversial (Innanen 1979; Allen & Richstone
1988 ; Ross, Mennim & Heggie 1997), it is reasonably
accurate because the cluster may approach equilibrium
after a few Galactic orbits. Because of these uncertain-
ties in the tidal radius, we remove escaping stars outside
10 times the initial cutoff radius, which is at least sev-
eral times larger than the tidal radius at apogalacticon.

The Galactic mass is set to zero initially and is in-
creased to its full value over 1/20 of a cluster cross-
ing time such that the initial perturbations due to the
Galactic tidal force are reduced.

(d) Limitation of Method

As in Paper I, the numerical scheme we outlined
above is explicitly designed for the simulation of tidal
interaction between globular clusters and the Galaxy.
It is not a general purpose scheme and should be used
with caution. For example, we adopted the cluster with
full mass segregation and neglected the further secular
evolution in dynamical friction process and therefore it
is inappropriate to use the scheme for the simulation of
internal dynamics of the cluster. The core collapse phe-
nomenon cannot be simulated by this scheme. Also, we
neglected secular changes in the cluster’s mass distribu-
tion and potential. Therefore, it is inadequate for the
simulation of tidal interaction between the Galaxy and
marginally bound stellar systems, such as dwarf galax-
ies and open clusters where a substantial mass loss may
be expected.

IV. MODEL PARAMETERS

We computed a large number of models to get the
dependence on the influence of the range of the Galac-
tic tidal fields and two-body relaxation strength. Only
several illustrative models will be presented here.

We consider only spherically symmetric Galactic po-
tentials in which the clusters’ energy and angular mo-
mentum are conserved along their Galactic orbit. In
all the cases below, we performed computations for a
logarithmic spherically symmetric Galactic potential.

The strength of the Galactic tidal effect also depends
on cluster’s orbital eccentricity on which very little ob-
servational information is available. Statistical analy-
ses of globular cluster kinematics (Frenk & White 1980)
suggest large spread in clusters’ orbital eccentricity. In
this study, we examine a circular orbit and an eccen-
tric orbit with e = 0.5. These two types of orbit are
described in detail in §3.3 in Paper 1.

The parameters of several illustrative models are
summarized in Table 4. The first column shows the
model names. Models I2 through 16 have an isotropic
while Models A2 through A9 have anisotropic velocity
distributions. The total number of stars (V) gotten
from the averaged mass of each mass class is given in
Column 2 in units of 105 M. Column 3 lists the ratio of
the mass of the Galaxy (Mg) to that of a cluster (M,)
in units of 10°My, where Mg refers to the Galactic
mass inside the semi-major axis of the cluster. Column
4 gives the radius of a circular orbit, or the semi-major
axis (a) of an eccentric orbit, in units of 10* core radii.
The eccentricity (e), defined by equation (24) of Paper
I, is given in Column 5. We define an orbital period,
To, as the time taken for one complete circular orbit or
twice the time taken from apogalacticon to perigalac-
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Table 3. Numerical values of constants

constant 1=1 i=2 i=3 1=4

a; 31.711365 71.244218 --5.502078 -2.597515

b; 29.256796 3.858764x10% 9.27006x1072  5.09068x10~2

¢ -7.906872x1073% 1.733153x1075% 4.08356x107% -1.24127x10°5

d; 78.114250 71.201518 7.590093 3.822718

Table 4. Model Parameters
Model N(10°) Mg/M.(10%) a e To/te Tr/Te T1-/To  Comments

1) (2) (3) 4 (G (® ™ (8) (9)
12 3 diffusion
13 3 2.000 0.8889 0.0 7549 2271.72 30.09 tide
14 3 2.000 0.8889 0.0 7549 2271.72 30.09 tide, diffusion
I5 3 0.288 0.8889 0.5 142.81 2271.72 15.91 tide
16 3 0.288 0.8889 0.5 142.81 2271.72 15.91 tide, diffusion
A2 30 18980.3 diffusion
A4 30 1.000 24694 0.0 290.31 18980.3 65.38 tide
A6 3 2.000 3.1113 0.0 290.31 2271.72 7.83 tide, diffusion
AT 30 0.144 2.4694 0.5 553.49 18980.3 34.29 tide
A9 9 0.480 3.6887 0.5 553.49 6229.93 11.26 tide, diffusion

ticon for an eccentric orbit. The crossing time, 7, is
defined as the time required for a star moving with the
rms velocity to traverse the half-mass radius. The ra-
tio of an orbital period to the crossing time is given in
Column 6. The ratio of the half-mass relaxation time,
7r, to the crossing time, defined by N/{26 log (0.4N}}
(Spitzer & Hart 1971), where N is the total number of
stars in the cluster replaced by N, is given in Column
7. Column 8 contains the ratio of the relaxation time

to an orbital period. Finally, Column 9 summarizes the

properties of each model.

V. RESULTS AND DISCUSSION

We study a series of model parameters which allows
an exploration of the parameter dependence. The main
issues we wish to examine are the dependence of tidal
evolution on: 1) the internal velocity distribution of
the stars, 2) the strength of the Galactic tide, 3) the
rate of two-body relaxation, 4) the escape rates, and 5)
mass function. Numerical simulations generate large
quantities of data. The most useful information is con-
tained in the spatial density p, surface density o, the
energy and angular momentum distributions, the ratio
of transverse velocity v; and radial velocity v,, and the
fraction of stars with retrograde orbits N,.; with re-
spect to the orbital motion of the cluster. The correla-
tion between energy and angular momentum indicates
the eccentricity of stellar orbits in the cluster. In our
analysis, the energy of each star is computed using the
potential of an isolated cluster which is set to zero at

infinity, while the potential of the Galaxy is neglected.
In order to preserve statistical significance, we also set
the spatial density and surface density at a given radial
bin to zero if the number of stars in this bin is less than
three. The most important goal of multi-mass model
is to compare results with those of single-mass model
and the evolution of mass function.

We simulate the isolated system over 50 Galactic
orbits to test the numerical stability of the code. And
the results are very stable in spatial density, in sur-
face density and in energy-angular momentum distri-
butions. Although few stars migrate slightly beyond
the initial cutoff radius, resulting in a small expansion
of the cluster radius due to initial random choice of the
velocities.

(a) Spatial Density

Spatial density plots for several models are shown in
Figure 1. There are more diffusion effect in single-mass
models than in multi-mass models (Model I2 and A2 in
Paper 1), especially in anisotropic model. The limiting
radius in simulations with eccentric orbits in Model 15
and A7 are more extended than those of Model I3 and
A4 due to relatively smaller tidal force, Coriolis force
and centrifugal force. The case of the tide and diffu-
sion process are also given in Figure 1. The density
decreases homologously as in the case of single-mass
case (Model 16, A9 in Paper II). The profile in these
multi-mass cases are very similar to those in single-mass
cases. To check the time dependence of tidal force the
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24 KIM & OH

results from models with orbital eccentricity of 0.5 are
in Figure 2 in several orbital phases. And there is not
much phase dependent.

(b) Surface Density

Surface density plots for various models show the
similar trend to the spatial density plots. And the plots
of two models (Model 16 and A9) are in Figure 3. They
also show no orbital phase dependence.

(c) Energy and Angular Momentum

We compare the plots of energy and angular momen-
tum in multi-mass models with the results in single-
mass models. Most of the models do not show much
differences, and one of them are shown in Figure 4a.
The plots of single-mass case are also shown for com-
parison. In this isotropic case, there is a broad spread
of angular momentum for any given energy as expected.
However significant differences are found in models A2,
A4 and A9. And their results are shown in Figures 4b,
4c and 4d respectively. The concentrated part of upper
left in Figure 4a at ¢ = 507, is the stars which do not
no longer enter inside the critical radius because their
orbital eccentricities are small after the tidal evolution.
The sharp boundary in upper part of each figure is due
to the maximum angular momentum for given energy,
i.e. a circular orbit. The anisotropic models in multi-
mass cases have more stars than those in single-mass
cases near this sharp boundary. This is because the
distribution of each mass component is different due
to mass segregation, which can lead low mass stars to
have small eccentricities. The sharp edges lower left at
t = 507, in Model A2 (Fig. 4b ; diffusion only case)
are artificial and due to the same effect which causes
a break in the density profile, i.e. the inconsistency
between the stellar distribution function of the tidally
truncated initial King-Michie models and that of iso-
lated evolved models. Once again, when the Galactic
tidal effect is included, these edges will vanish.

The evaporated stars migrate into the high-energy
regions of phase space. This is because the main effect
of two-body relaxation is a diffusion in energy. Stars
diffuse to large radii as a result of energy gain rather
than angular momentum gain. Consequently their or-
bits become more eccentric. Since two-body relaxation
occurs near the center where the density has a maxi-
mum, orbits with large orbital semi-major axis would
stop evolving unless they have a sufficiently large ec-
centricity to allow them to return to the cluster core.
There are fewer stars in lower energy regions for most
of the models after 50 orbital time. The general pattern
of angular momentum and energy evolutions are very

similar to the evolution in single-mass cases in Paper
II.

(d) The Ratio of Transverse and Radial Veloc-
ity Dispersions

For the isotropic cases, there is no significant evolu-
tion on the time scale of 50 Galactic orbits in tide only
model (Model I3), although mean of transverse com-
ponents are increased in Model I4 in which the tide
and diffusion are considered. For the anisotropic mod-
els, the initial magnitude and dispersion of v; is much
smaller than those of v, in the outer regions of the clus-
ter. Galactic tidal torque induces angular momentum
to the stellar orbit about the cluster center which in-
creases the magnitude and dispersion of v;. Since the
clusters’ gravity dominates near the cluster core, stars
in the outer regions of the cluster are more strongly
perturbed. In contrast to the initial theoretical ve-
locity ratio distributions (the solid lines), the outer
regions of the cluster become increasingly isotropized
with time. The general time evolution of velocity dis-
tribution in multi-mass models are similar to those in
single-mass models in Paper II except the models whose
orbits are eccentric around the Galaxy. In these models
low mass stars occupy the higher angular momentum
region where the tangential velocity is big. So the net
number of these stars is higher than that of single mass
stars. Two of these models are plotted in Figure 5 for
illustrations. We also note that for the eccentric mod-
els, there is no evidence for dependence on the orbital
phase of the cluster.

(e) The Fraction of Stars with Retrograde Or-
bits

Although the diffusion process is equally efficient for
direct and retrograde orbits, the external tide differ-
entially affects the stability of these orbit. Near the
theoretical tidal radius the direct orbital motion and
its prolonged action induces a considerable exchange
of energy and angular momentum between the clus-
ter’s Galactic orbit and the stellar orbits in the cluster.
Consequently, stars with direct orbits are most easily
tidally removed from the cluster. In contrast, stars with
retrograde motions have brief and frequent inferior con-
Junction such that the energy and angular momentum
exchange rate due to the Galactic tidal torque is av-
eraged to much smaller values. These orbits are much
more stable. These features in multi-mass models are
very similar to those in single-mass models and two of
representative models (I6 and A9) are given in Figure
6. In theses models the escapers are consisted of near
same amount of direct and retrograde orbit stars after
first orbital period because initial velocity distribution
of both kinds of stars are random, so some of them
can go further than the cutoff radius. Then those stars
with nearly same ratio of direct and retrograde orbits
can escape easily under the tide and diffusion.

(f) The Escape Rates

We may estimate the evaporation rate of stars from
a cluster by assuming that a Maxwellian distribution
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is established during one relaxation time. Then the
probability of evaporation during one relaxation time
may be set equal to the fraction of stars for which
the velocity is greater than twice the rms velocity in
a Maxwellian distribution. This simple estimate gives
7.4 x 1073 for the evaporation rate. Spitzer and Hiarm
(1958) found an escape rate of 8.5 x 10~ for systems
with uniform density and a flat-bottomed potential.
The initial mass-loss rate per unit time is correctly
given in this case. However, it is unrealistic if the dis-
tribution is time dependent. In the case of a tidally lim-
ited model, where the ratio of half-mass to tidal radius
is rp/r¢ = 0.145, self-similar solutions of the Fokker-
Plank equation (Hénon 1961) for an isotropic velocity
distribution gives an escape rate of 4.5 x 10~2 per re-
laxation time. The Monte Carlo method with a single
mass component (Spitzer & Chevalier 1973) gave an
escape rate of 0.015 and 0.05 as ry /r; was varied from
0.11 to 0.34. Our corresponding values are shown in
Table 5a and 5b. The escape rates per relaxation time
are given at several orbital time. We list the case of
single mass model for the comparison. Although the
escape rates show small time dependence, our results
are generally consistent with multi-mass models by Lee
& Goodman (1995) and Giersz & Heggie (1997).

All the models show more escapers in multi-mass
cases than in single-mass cases. This is because there
are more mass in outer region in multi-mass case (Fig.
7), which receives more tidal force than in single-mass
cases. Although single-mass models experience more
diffusion process, the tidal effect gives more influence
on the escaping rates. In the diffusion only Model A2
there are more stars piled up just outside the cutoff
radius seen in Figure 4b. The amount of diffusion in
single-mass case is bigger, but the escape rate is smaller
than that in multi-mass case (Model 12 & A2 in Ta-
ble 5a & 5b), which seems to be controversial. This
can be explained by following. There are less diffusion
processes in multi-mass case, but the amount of dif-

fusion imposed to low mass stars are bigger than the
average diffusion process and they can be kicked out
further to become escapers. These effects are less sig-
nificant in isotropic case (Model 12) than in anisotropic
case (Model A2) because the difference of mass con-
centration is smaller in isotropic case as seen in Figure
7. When both the tide and diffusion process are im-
posed, they can be added and give more escape rates
in multi-mass cases. And there are more escapers in
isotropic multi-mass models than.in anisotropic multi-
mass models, because the distribution of stars in each
mass component of isotropic case is spread wide in
energy and angular momentum space, which can es-
cape easily, whereas the higher mass component of
anisotropic case concentrates in lower angular momen-
tum.

(g) The Evolution of the Mass Function

The short relaxation time in globular clusters leads
to the mass segregation, which makes the heavy stars
be more in central region and the light stars in outer
region. And the tidal force is more effective in the
outer region. Because the low mass stars can escape
easily, a flattening of the IMF is expected as a result
of the dynamical evolution (Lee et al. 1991; Vesperini
& Heggie 1997). The strength of the tide on the star is
independent of the mass of the star, although the dif-
fusion process is more effective on the low mass stars.
It turns out the diffusion coefficient for low mass stars
is not much larger than that for the high mass stars
in our models. So the escape of stars with the Galac-
tic tide does not depend much on their masses a lot.
The previous works usually focus on the mass func-
tion inside the globular clusters. But our results can
explore the features of the mass function beyond the
tidal radii because of our moderate criterion of escape
radius (~ 10r,).
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Table 5a. Escape rates in single-mass models

Model t/,

10 20 30 50
12 7677 x107° 6.428 x 1077 1.934 x 1073 0
I3 1.271x 1072 6.803 x 10~  5.489 x 103  6.940 x 10~*
I4 2.261 x 107! 2,136 x 107! 1.768 x 10~! 1.064 x 107!
I5  2.640x1073 2999 x 1072 2,688 x 1073 2.731 x 10~3
I6 7.815x 1072 9.278 x 1072 8.792 x 1072 6.741 x 1072
A2 6.152x 107% 1.029 x 10~° 1.031 x 10~3 0
A4 1.244 x 107*  4.185x 107° 7.355 x 1073 0
A6 1.085x 1072  6.776 x 1072  5.465 x 10~3 5.482 x 1073
A7 3153 x107* 3.706 x 10™* 1.066 x 10~*  2.151 x 10~*
A9 9.448 x 10~3  9.039 x 1073 7.894 x 1073  7.107 x 10~3

Table 5b. Escape rates in multi-mass models
Model t/7,

10 20 30 50
12 5.178 x 1073 2477 x 10~%  2.990 x 103  3.400 x 103
13 5.227x1072 1.815x 1072 1.227x10"2 3.867 x 1073
I4 3442 x 107! 3.659 x 107!  3.105 x 10!  1.640 x 10!
15 6.841 x 1072 7.005 x 1073 8.954 x 103  5.339 x 103
16 1.128 x 107! 1.631 x 107! 1.556 x 10! 8.781 x 102
A2 5.200 x 103 7.277 x 1073 7.192x 107% 4.315x 1073
A4 1.531 x 10°2  3.500 x 1073  6.292 x 1073  4.314 x 10~3
A6 9.756 x 102 8.754 x 1072 4.884 x 102 5.761 x 102
AT 8353 x10% 1.056 x 1072 1.445x 10"2 7.832 x 10-3
A9 6.057 x 1072 7.8902 x 102 7.861x 10~2 5.551 x 102
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We define the mass function index difference Az as
Ap = logn; —logns  logns — logn,
logms — logmy

1
logms — logm;’ (17)

where ni,ns,n4 and ns are the number of stars (1 ;
highest mass component, 5 ; lowest mass component),
and my,mg, ms and ms are the mass of stars.of each
mass class. If Az increases, mass function departs from
power law, and the fraction of low mass stars is getting
high. The models (Model 12, 13, 15, A2, A4 & AT) with
the tidal effect only or the diffusion process only have
little number of escapers, which causes large statistical
fluctuations. So Azs’ of models with both the tide and
the diffusion in three regions of the globular clusters are
shown in Figure 8a and 8b for isotropic and anisotropic
cases respectively. Although the initial data are gen-
erated from power law, Az inside the cluster is not
zero because we use the data outside the critical radius
where the effect of mass segregation appears. The Axs’
in anisotropic models are getting smaller than the ini-
tial values inside the cutoff radius, but almost same in
isotropic models. This flattening in mass function is be-
cause the distribution of high mass stars in anisotropic
models is in low angular momentum region compar-
ing with that of low mass stars (Fig. 9), therefore low
mass stars are easily removed. As a result, Azs’ for
the escapers in isotropic models are very similar to the
values of the region between critical radius and cutoff
radius, whereas they are a little bit larger in anisotropic
models. The small flattening effect seems to be contra-
dictory to other results (Lee, Fahlman & Richer 1991 ;
Vesperini & Heggie 1997) because there is not constant
supply of stars inside the critical radius in our scheme
of hybrid method. Nevertheless the qualitative result
can be obtained beyond the critical radius.

In isotropic models, high mass stars are relatively
more concentrated in the region of low energy and high
angular momentum (Fig. 9 (1)) where the diffusion
process is more efficient, so high mass stars can be
kicked further than low mass stars. And this gradient
of distribution beyond cutoff radius will be enforced
when stronger tidal effect is imposed like in circular or-
bit. Therefore the fraction of high mass stars between
cutoff radius and five times of cutoff radius is smaller
in Model 14 (case of circular orbit) that in Model 16
(case of eccentric orbit), but it is opposite in the re-
gion between five times of cutoff radius and ten times
of cutoff radius (Fig. 8a (b) & (c)). The distribution
of low mass stars in energy-angular momentum space
for anisotropic models is wider than that of high mass
stars, whereas most of high mass stars have low angular
momentum (Fig. 9 (2)), so spatial distribution of low
mass stars are more extended by stronger tidal force.
So the ratio of low mass stars in Model A6 (case of cir-
cular orbit) is higher beyond cutoff radius than that in
Model A9 (case of eccentric orbit). But this difference
is getting smaller beyond five times of cutoff radius due
to steady supply from diffusion process. And Azxs’ are
bigger than those inside the cutoff radius (Fig. 8b)

VI. SUMMARY

In this paper, we present numerical simulations of
the tidal evolution of multi-mass component globular
clusters under the influence of internal diffusion and
the Galactic tide. This is the extension of our previous
work (Paper I and Paper II) where single-mass models
are simulated. So we focus on the differences between
single-mass models and multi-mass models and the evo-
lution of the mass function in this paper.

First the general evolution in multi-mass models is
similar to single-mass models, although there are sev-
eral differences. There is no evidence for dependence
on the orbital phase of the cluster as in Paper I and
Paper II.

The Galactic tidal effects are more effective in outer
part of the clusters, so there are more escaping pro-
cess in multi-mass case which has more mass in the
outer region than single-mass case has. But the dif-
fusion process is more effective in more concentrated
mass distribution, then more stars are likely to kicked
out from the center in the case of single-mass mod-
els. However the net escapers in the diffusion case of
multi-mass models are bigger due to larger diffusion
coefficient of low mass stars which are the primary es-
capers. Therefore the Galactic tide and the diffusion
process can accelerate the escaping rates in multi-mass
models. The mass-function evolutions show that the
fraction of low mass stars beyond the cutoff radius in
anisotropic models with the tide and diffusion is larger
than that in isotropic models.
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models. The number of high mass stars in (a) is same as that of low mass stars in (b) to enforce

the distribution.
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