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Acoustic field simulation of a PZT4 disc projector
using a coupled FE-BE method
S. S. Jarng

Abstract

This paper describes the application of a coupled finite element-boundary element method (FE-BEM) to

obtain the steady-state response of a piezoelectric transducer. The particular structure considered is a

PZT4 disc-typed projector. The projector is three-dimensionally simulated to transduce applied electric

charge on axial surfaces of the piezoelectric disc to acoustic pressure in air or in water. The directivity

pattern of the acoustic field formed from the projected sound pressure is also simulated. And the

displacement of the disc caused by the externally applied electric charge is shown in temporal motion.

The coupled FE-BE method is described in detail.

1. Introduction

In underwater acoustics, transducers and
transducer materials are perhaps most essential
area of research. Sonar transducers are the only
sensor with which any kind of signal can be
transmitted and received in deep ocean. There are
several aspects of consideration in the design and
fabrication of sonar transducers; acoustic power,
sensitivity, directivity and frequency response etc..
The former two factors are mainly depending on
‘types of material while the latter two factors are
determined by structural design. Because of it, the
development of sonar transducers are carried out
in such two aspects; materials and structural
design. The most frequently used material for
sonar transducer is piezoelectric materials because
of their stable performance and economical price
at present. And in the structural aspect there are
endless diversities In sonar transducer design.

Also many different computational methods have
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been developed for effectively designing CAD

tools. Electric circuit modelling is the most
effective analytical tool for simple types of sonar
transducer. And many numerical methods for
simulating sonar transducers have been developed
to analyze other complicated types of transducer
structures for better performance. Since a sonar
transducer is used in water, modelling of the
satisfy  both

materialistic transduction and externally radiating

sonar transducer must internal
condition. In these aspects the finite element
method (FEM) and the boundary element method
(BEM) is perhaps the most suitable numerical
techniques for the solution. Both methods were
developed for the numerical solution of partial
differential  equations (PDE)} with boundary
conditions. Since both methods solve the PDEs by
numerically  elemental

integration, they are

compatible each other and therefore they can be
coupled together [1,2]

Different  types of in-air  piezoelectric

transducers have been simulated by the FEM
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[3-5]. And also modified FEMs such as the
mixed FE perturbation method [6] or the mixed
FE plane-wave method [7] have been developed
in order to simulate an array of transducers or
composite sonar transducers. Further developments
have been made so as to include the effects of
infinite fluid loading on transducer surface. For
example, Bossut et. al. [8] and Hamonic et. al. [9]
used fluid finite elements as an extension to
structural finite elements with the condition that
outer boundary of the fluid elements represents
fluid
elements for infinite acoustic radiation [10,11]. The

continued radiation. Others used ’infinite’
BEM is probably accepted as the most suitable
method for the radiation problem because the
BEM directly solves the Helmholtz PDE with the

radiation condition [1,2].

The main aim of this paper is to develope a
coupled FE-BEM and to simulate the structural
behaviour of the flooded piezoelectric disc when
the sonar transducer is driven by externally
applied This
disc-typed transducer is chosen to verify the

electrical  charge. particular
directivity pattern of the underwater acoustic
radiation at a high frequency such as 200KHz.
The presented disc transducer is often used in
fishery sonars at 200KHz driving frequency. The
directivity pattern of the projected acoustic
pressure is also shown in temporal motion and
compared with that of a theoretical results. Both
directivity patterns in water as well as in air are

presented with expected projector sensitivity.
2. Numerical Methods

2.1 Finite Element Method (FEM)
is the

formulation of the piezoelectric equations:

The following equation (1) integral

{(R+H{F} = [K.ND+[K )4
-’ [M{a + jelR{a} 1)
—{@ = [Kulld + [Kyl8)

where

{F}  Applied Mechanical Force
{F1}  Fluid Interaction Force
{Q}  Applied Electrical Charge
{a} Elastic Displacement

{#}  Electric Potential

[Kuw! Elastic Stiffness Matrix
[Kw] Piezoelectric Stiffness Matrix [Ke = [Kuwl’
[Kew] Permittivity Matrix

[M] Mass Matrix
[R] Dissipation Matrix
® Angular Frequency

The isoparametric formulation for 3-dimensional
structural elements is well documented by Allik
H. et. al. [3]. Each 3-dimensional finite element is
composed of 20 quadratic nodes and each node
has nodal displacement (ax, ay, a) and electric
potential (§) variables. In local coordinates the
finite element has 6 surface planes (*xy, *yz, *
zx) which may be exposed to external fluid
environment. The exposed surface is used as a
which is of 8

boundary element composed

quadratic nodes.

2.2 Boundary Element Method (BEM)

For sinusoidal steady-state problems, the

Helmholtz equation, V¥ + KU = 0, represents

the fluid mechanics. & is the acoustic pressure

with time variation, e, and k(=w/c) is the wave
numkber. In order to solve the Helmholtz equation
in an infinite fluid media, a solution to the
equation must not only satisfy structural surface

v

boundary condition (BC), “on = Pr o’ a,

but also the radiation condition at infinity,

. oT | . a2 _ _ad

11,11an §S(-——-—ar +k®)dS = 0. 5, represents
differentiation along the outward normal to the
boundary. oy and a, are the fluid density and

the normal displacement on the structural surface.
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Acoustic field simulation of a PZT4 disc projector using a coupled FE-BE method 3

The Helmholtz integral equations derived from
Green’s second theorem provides such a solution

for radiating pressure waves;

§( 252D~ Gip.0 202 ) s,

D) Tp) — Fulp)
@

where Gi(p,q) = , r=|p—gl

47{7
p is any point in either the interior or the
exterior and q is the surface point of integration.
B{p) is the exterior solid angle at p.

The acoustic pressure for the i global node,

W(p,), is expressed in discrete form [12):

(1<i< ng)

B(8) T(p) — ¥odp)
- §(m02HLD G, 00 HD ) s,
(3a)

~ G250 as,
gES sub m 3b)

aG(p,
ﬁ:‘Ni(Q) wm‘j—j%ﬂ
= : ds,

- Glp, @ }ZN;(!J)—BL

- mzlfS

( (q) 2GP Géﬁ';"q}*

™

(30)

i

mﬁﬁlg‘\(f N{a)- aG(”“") ds)

— o B3 fan,w)G(p,-, q>nadsq)a m
(3d)

I

A m; (38)

21 gAim.}wm,j - Py o* ";2 ﬁ:

where nt is the total number of surface elements
and a, ; are three dimensional displacements.
Equation (3b) is derived from equation {3a) by
discretizing integral surface. And equation (3c) is
derived from equation (3b) since an acoustic
pressure on an integral surface is interpolated

from adjacent 8 quadratic nodal acoustic pressures
corresponding the integral surface. Then equation
(3d) is derived from equation (3¢) by swapping
integral notations with summing notations. Finally
the parentheses of equation (3d) is expressed by

upper capital notations for simplicity.

When equation (3e) is globally assembled, the

discrete Helmholtz equation can be represented as

([AI-AI{¥} = +p,; & [Bl{a}—{¥,} @
where [A] and [B] are square matrices of (ng by

ng) size. ng is the total number of surface nodes.

Where the impedance matrices of equation (4),
{A] and I[B], types of
singularity arise [13]. One is that the Green's

are computed, two
function of the equation, Gup,,q). becomes
infinite as q approaches to pi. This problem is
mapping
coordinates into triangular local coordinates and

solved by such rectangular local
again into polar local coordinates [14]. The other
is that at certain wave number the matrices
become ill-conditioned. These wave number are
corresponding to eigenvalues of the interior
Dirichlet problem [15]. One approach to overcome
the matrix singularity is that [A] and (Bl of
equation (4) are modified to provide a unique
solution for the entire frequency range [16-19].
The modified matrix equation referred to as the
modified Helmholtz gradient formulation (HGF)
{19] is obtained by adding a multiple of an extra

integral equation to equation (4).

(LA}~ NDal CH{¥)

= +0; FBIDd DD {a } (¥, D2y 2 aw,,,(

(%)
W h e r e

V-1
T k- (Number of surface elements adiacent a surface node)

a =

{C] and [D} are rectangular matrices of (nt by
ng) size. nt is the total number of surface
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elements. @ symbol indicates that the rows of
[C}[D] ‘corresponding to surface elements adjacent
a surface node are added to the row of [Al[B]
corresponding to the surface node, that is,

=

8 £o00= £ $o00+ 5 BB om

)
where S() is the number of surface element

2l g}A(i'j): 121 JSIA(I.,])+ 121 gl( ;ﬁ-la C(m'j))

adjacent a surface node. The derivation of the
extra matrices [C][D] are well described by
Francis D.T.L[19]. Equation (6) may be reduced in

D

its formulation using superscript for

convenience;

A® W) = +p, B¥a)- 0O,

where
([A)- A NPl C) = A®
([B1®d D) = B®
(wim‘@a% = w?’;v

Equation (7) can be written as

(T) = +0,04A%) 'B¥a)-(4®) 198, )

2.3 Coupled FE-BE Method

The acoustic fluid loading on the solid—fluid
interface generates interaction forces. These forces
can be related to the surface pressures by a
coupling matrix [L] [2,12];

{(F} = — [LUTT) (9

where [L] = fN'nNdS. N is a matrix of

surface shape functions and n is an outward
normal vector at the surface element. N' is the
transposed form of N matrixes.

Equations (8) and (9) indicate that the interaction
force can be expressed by functions of elastic
displacement instead of acoustic pressure. This

A
w

A
relationship can be applied to equation (1) when
the sonar transducer model is submerged into the
infinite fluid media:

(A+[L1(A%) 199,

= [K.ad + [o; 01L1(A®) "'BO)( )
+ [K 8 — o IM{a + jolRNa

(@ = [Kula + [K, N
(10)

Since the present sonar transducer is modelled
as a projector, the internal force vector, {F}, and

the external incident pressure, [L](A%) _lqﬂ,-?,c

, of equation (10) are removed. The only applied
BC for the equation is the applied electrical
charge vector, {Q}. The acoustic pressure in the
far field is determined by B(p)=1 for given values
of surface nodal pressure and surface nodal

displacement;

W) = "21 i‘Aim.iwm.i_pf o mﬁ;l gBim.ia m.i

—( A®) —lw%c
(11)
3. Results
The coupled FE-BE method has been

programmed with Fortran language running at a
supercomputer Cray C90. Calculation is done with
double precision and the program is made for
three dimensional structures. Because each
structural node has 4 DOF, the size of the
globally assembled coefficient matrices of the
matrix equation are 4*ng by 4xng. The particular
structure considered is a flooded piezoelectric
(PZT4) disc (Fig. 1). The diameter and the
thickness of the disc 5cm

respectively. The whole disc had been divided

are and lcm
into 224 isoparametric elements (Fig. 2). Global
node numbers are attributed at 20 nodes of each

element. It is desired to have more elements

- 214 -



Acoustic field simulation of a PZT4 disc projector using a coupled FE-BE method 5

representing smaller local regions for higher

frequency analysis. However, calculation with
more number of nodes cost more time. Therefore
meshing of elements depends on the maximal
limit of interest frequency. It is a common
practice to have the size of the largest element to
be less than A/3. In this paper the interest
frequency of the acoustic radiation is 200KHz, so

that A/3 is about 5.8mm.

Table 1 shows the material properties of the
PZT4 piezoelectric ceramic. The actual ceramic
shell is
electrode is coated axially on upper and lower

axially polarized and therefore the
surfaces [20]. The present modelling of the sonar
the disc
simulated to

transducer is a sonar projector. So,
ceramic is three-dimensionally
transduce an external electric charge on upper
and lower surfaces of the disc to acoustic
pressure in the far field. This electrical energy
drives the piezoelectric disc as a transmitter.
From equation (11) the acoustic pressure in the
far field is calculated along the circle with the
directivity angle ¢ (Fig. 1). The normalized value
of the far filed pressure is used as the

quantitative degree of the directivity.

Table 1. Material Properties of PZT4
(Axially Polarized Properties)

Unit Unit Unit
3 Z - _, 4 = (,\T/m-,)/
o | B0 |Kg/m'l C |LISE+11] N/m €4 B [m

CEL3E1| Nim* | C2Z|256B+10| N | 37 127 N/

61;.2 (V/m)
Cpamend Nm* | CZp2s6E+10| N | @2 127 [N
CLi43E+10 N/m* ngi B06E+10] N/m” || g% |6.46E-9] F/m
C3E+11| Nm* | g} | 52 ()\/}‘[‘n; g} [p46E-9| F/m

(N/m”)

v s K =
C2n43E+1q N/m 52 [y

&% |562E-9| F/m

Z

Diameter 5cm
Thickness 1cm

Figure 1 PZT4 disc-typed projector.

The projector is three-dimensionally
simulated to transduce applied electric
charge on axial surfaces of the piezo-

electric disc to acoustic pressure in air

or in water.

0024

0014

RHU

0024

Figure 2 The disc structure is discretized into
finite structural elements. The piezo-
electric (PZT4) disc can be divided into
either 224 elements.

Fig. 3 shows the directivity patterns of the disc
ceramic in polar form at 200KHz input frequency.
Fig. 3(a) and Fig. 3(b) are the coupled FE-BEM
result and the theoretical result respectively [21].
Thev look very similar except side lobes. Since
the theoretical result is analytically derived using
only axial(Z axis) displacement while the coupled
FE-BEM result is calculated from finite elements
including three dimensional displacements, that
difference could happen. Fig. 4 shows the same
directivity patterns of the numerical result
(continuous line) and the analytical result(dotted
line) in rectangular form with logarithmic scale.

The -3dB beam width of the numerical result is
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about 89° while that of the analytical result is
about 8.82°. Because the difference between the
maximum normalized pressure of the main lobe
and that of the second lobe is more than 14dB,
the difference in side lobes is in fact not
significant. Fig. 5 shows the directivity pattern of
the coupled FE-BEM result in three dimenstonal

polar form at 200KHz.

129 901. 60 120 gso
150 H19%7 150 SoARITA N0
MSSIRAL] | NS )°

Y ".ﬂ"' %30 10 ".ﬂ"’ 30

Figure 3 the directivity pattern of the coupled FE

~-BEM result in three dimensional polar
form at 200KHz

Figure 4 Directivity patterns of the disc ceramic
in rectangular form with logarithmic
scale at 200KHz; coupled FE-BEM
result {continuous line), theoretical result
(dotted line)

The projector sensitivity of the flooded ceramic

disc at 200KHz is 188 dB re 1 (Pa/V at the
maximum peak of the directivity pattern. And
Fig. 6 shows the three dimensional displacement
of the disc at a constant temporal phase. In the
figure the most significant displacement happens

at the center of the disc in axial direction

Figure 5 the directivity pattern of the coupled
FE-BEM result
polar form at 200KHz

in three dimensional

Figure 6 the three dimensional displacement of
the disc at a constant temporal phase.

i
1
4

Figure 7 The directivity pattern of the ceramic
disc in air at 200KHz in polar form (a)
and in  rectangular  form with

logarithmic scale (b).

Fig. 7 shows the directivity pattern of the
ceramic disc in air at 200KHz in polar form (a)
and in rectangular form with logarithmic scale
(b). The projector sensitivity of the in-air ceramic
disc at 200KHz is 139 dB re 1 upPa/V at the
maximum peak of the directivity pattem. The
directivity pattern of the ceramic disc in air is
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Acoustic field simulation of a PZT4 disc projector using a coupled FE-BE method 7

much narrower at the center than that in water
while the projector sensitivity in air is about one
tenth of that in water.

4_ Conclusion

A coupled FE-BE method has been developed
and applied to simulate a sonar transducer. The
flooded
three-

particular structure considered is a

plezoelectric disc. The transducer is

dimensionally simulated to transduce external
electrical charges on upper and lower surfaces of
the disc to acoustic pressure in the far field. The
acoustic field formed from the projected sound
pressure is also simulated. And the displacement
of the disc caused by the externally driven
electrical charge is shown in temporal motion.
The coupled FE-BE method is very useful for
predicting the mechanical and the acoustical

behaviour of the sonar transducer.

In general, as the frequency of external loading
to the piezoelectric transducer is increased, more
number of structural finite elements are
necessarily required. Most of executing time of
the coupled FE-BEM program is spent in matrix
solution in which the size of the matrix is
increased to 4ng by 4ng matrix as the number of
global nodes are increased to ng. Therefore the
present numerical method need to be linked to a
faster matrix solver such as parallel processing

for next work.
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