Selection of Immobilization Material for Stabilization of Bioluminescence from Photobacterium phosphoreum

Bioluminescence 안정성을 위한 Photobacterium phosphoreum의 고정화 물질에 관한 연구

  • Published : 1999.08.01

Abstract

Various materials including sodium alginate, k-carragreenan, collagen and polyacrylamide were studied in order to maintain stability of bioluminescence of P. phosphoreum for the purpose of continuos monitoring of toxic subtances. Collagen and polycryamide were shown to be inadequate for immobilization of p. phosphoreum since the bioluminescence decreased when cells were mixed with such materials. In case of k-carrageenan, the bioluminescence was stable when compared with collagen and polyacryamide. However, the k-carrageenan was not suitable for immobilization of p. phosphoreum as cells could not be mixed with the material properly in temperature at which gel formation already occurred. P . phosphoreum must be treated at low temperature below that of gel formation since these are psychrophilic luminescent bacterial. When cells were immobilized on sodium alginate, the bioluminescence was stably maintained for 20 minutes.

식품이나 수질 내의 독성 물질 monitoring을 위해서 발광미생물인 P. phosphoreum이 많이 연구되고 있는데 이 독성 물질측정을 위하여 P. phosphoreum을 더 효과적으로 이요하기 위해 고정화하여 이용하는 방법을 연구하였다. 고정화 방법을 크게 4가지로 나누어서 그 방법에 따라 각각 고정화 물질 한가지씩을 선택하여 P. phosphoreum의 bioluminescence 안정성을 알아보았다. Polvacrylamide나 collagen에서는 bioluminescence가 유지를 못하고 material과 cell을 혼합하자마자 급격히 떨어졌으나 alginate와 k-carrageenan에서는 빛 안정성이 매우 좋았다. 그러나 k-carrageenan은 온도를 높여야 gel이 형성되는 성질을 갖고 있기 때문에 저온성 발광 미생물인 P. phosphoreum에는 적합한 고정화 물질이 되지 못한다. 따라서 P. phosphoreum의 bioluminescence를 안정되게 유지하면서 고정화가 용이한 polymer로는 alginate가 적합하다.

Keywords

References

  1. J. Food Protect. v.55 no.1 Bacterial Bio Luminescence : Applications in Food Microbiology Baker, J. M.;M. W. Griffiths;D. L. Collins-Thompson
  2. Wat. Res. v.31 no.8 Development and Application of a Bioluminescence ATP Assay Method for Rapid Detection of Coliform Bacteria Tanaka, H.;T. Shinji(Iwano);K. Sawada;Y. Monji;S. Seto;M. Yajima;O. Yagi
  3. Food Tech. v.6 The Role of ATP Bioluminescence in the Food Industry : New Light on Old Problems Griffiths, M. W.
  4. J. Microbiol. Biotechnol. v.7 no.4 Immobilized Luminscent Cell-based Flow Through Monitoring of Environmental Pollutants Britz, M. L.;N. Simonov;U. H. Chun
  5. Appl. and Environ. Microbiol. v.44 Bacterial Bioluminescence as a Bioassay for Mycotoxin Yates, I. E.;J. K. Porter
  6. Food Tech. v.10 Immobilization and Permeabilization of Cultured Plant Cells Knorr, D.;S. M. Miazga;R. A. Teutonico
  7. 생물공정공학 구윤모;서진호;장용근;박태현(공역)
  8. J. chem. Tech. Biotechnol. v.53 Stability of Lactobacillus Bulgaricus Immobilized in k-carrageenan Gels Buyukgungor, H.
  9. Methods in Enzymology v.135 Immobilization of Cell with Carrageenan Chibata, I.;T. Tosa;T. Sato;I. Takata
  10. Wat. Res. v.30 no.12 Characteristics of and Selection Criteria for Support Materials for Cell Immobilization in Wastewater Treatment Leenan, E. J. T. M.;V. A. P. Dos Santos;K. C. F. Grolle;J. Tramper;R. H. Wijffels
  11. Bioprocess engineering : Kinetics, Mass transport, Reactors and Gene Expression Vieth, W. R.
  12. Methods in Enzymology v.135 Immobilization of Living Microbial Cells in Polyacrylamide Gel in Skryabin, G. K.;K. A. Koshcheenko
  13. Appl. Microbiol. Biotechnol. v.46 Continuous Production of Ethanol Using Yeast Cells Immobilized in Preformed Celluiose Beads Szajani, B.;Z. Buzas;K. Dallmann;I. Gimesi;J. Krisch;M. Toth
  14. J. Texture studies v.26 Rheology of Sodium Caseinate-carrageenan Mixtures Keogh, M. K.;K. I. Laine;J. F. O'connor
  15. Adv. Appl. Microbiol. v.28 Immobilized Plant Cells Brodelius, P.;K.Mosbach