Abstract
On a generalized Riemannian manifold $X_n$, we may impose a particular geometric structure by the basic tensor field $g_{\lambda\mu}$ by means of a particular connection ${\Gamma}{_\lambda}{^\nu}_{\mu}$. For example, Einstein's manifold $X_n$ is based on the Einstein's connection defined by the Einstein's equations. Many recurrent connections have been studied by many geometers, such as Datta and Singel, M. Matsumoto, and E.M. Patterson. The purpose of the present paper is to study some relations between a generalized semisymmetric $g$-recurrent manifold $GSX_n$ and its submanifold. All considerations in this present paper deal with the general case $n{\geq}2$ and all possible classes.