

영상분석 Ⅱ: Image Analysis

김 재 석 삼성종합기술원

- I. Introduction
- II. Pattern Recognition
- III. Decision-Theoretic Methods
 - 1. Minimum distance classifier
 - 2. Baysian Classifier

N. Clustering

- 1. K-means Algorithm
- 2. Fuzzy K-means Algorithm

I. INTRODUCTION

Elements of Image Analysis

- Low-level processing deals with functions that may be viewed as automatic reactions, requiring no intelligence on the part of the image analysis system(Reduce Noise, Deblurring).
- Intermediate-level processing deals with the task of extracting and characterizing components(regions) in an image resulting from a low-level process.
- High-level processing involves recognition and interpretation. These two processes have a stronger resemblance of what generally meant by the term intelligent cognition.

II. PATTERN RECOGNITION

Elements of Pattern Recognition

III. DECISION-THEORETIC METHODS

Let $x=(x_1, x_2, ..., x_n)^T$ represent an *n*-dimensional pattern vector. For M pattern classes $\omega_1, \omega_2, ..., \omega_M$, decision functions $d_1(x), d_2(x), ..., d_M(x)$ with the property that, if a pattern x belongs to class ω_i , then

$$d_i(x) > d_i(x)$$
 $j = 1, 2, ..., M; j \neq i$

The decision boundary separating class ω_i from ω_j given by values of x for which $d_i(x) = d_j(x)$ or, equivalently, by values of x for which

$$d_i(x) - d_i(x) = 0$$

1. Minimum distance classifier

Prototype vector of class ω_i :

$$\boldsymbol{m}_j = \frac{1}{N_i} \sum_{\boldsymbol{x} \in \omega_j} \boldsymbol{x} \quad j = 1, 2, \dots, M$$

Decision Criteria:

$$D_{j}(\mathbf{x}) = \|\mathbf{x} - \mathbf{m}_{j}\| \quad j = 1, 2, ..., M$$

$$d_{j}(\mathbf{x}) = \mathbf{x}^{T} \mathbf{m}_{j} - \frac{1}{2} \mathbf{m}_{j}^{T} \mathbf{m}_{j} \qquad j = 1, 2, ..., M$$

Decision Boundary:

$$d_{ij}(\mathbf{x}) = d_i(\mathbf{x}) - d_j(\mathbf{x})$$

$$= \mathbf{x}^T (\mathbf{m}_i - \mathbf{m}_j) - \frac{1}{2} (\mathbf{m}_i - \mathbf{m}_j)^T (\mathbf{m}_i - \mathbf{m}_j) = 0$$

Known as a hyperplane.

2. Optimal Statistical Classifiers

The probability that a particular pattern x comes from class ω_i is denoted $p(\omega_i/x)$. If the pattern classifier decides that x came from ω_j when it actually came from ω_i , it incurs a loss, denoted L_{ij} . As pattern x may belong to any one of M classes under consideration, the average loss incurred in assigning x to class ω_i is

Conditional Average risk(loss):
$$r_j(x) = \sum_{k=1}^{M} L_{kj} p(\omega_k / x)$$

From basic probability theory, p(a/b) = [p(a)p(b/a)]/p(b)

$$r_j(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \sum_{k=1}^{M} L_{kj} p(\mathbf{x} / \omega_k) P(\omega_k)$$

where $p(x/\omega_k)$ is the probability density function of the patterns from class ω_k and $P(\omega_k)$ is the probability of occurrence of class ω_k .

If it computes $r_1(x)$, $r_2(x)$, ..., $r_M(x)$ for each pattern x, and assigns the pattern to the class with the smallest loss, the total average loss with respect to all decisions will be minimized.

Bayes Classifier:

Assign an unknown pattern x to class ω_i if $r_i(x) < r_j(x)$ for j = 1, 2, ..., M; $j \neq i$.

$$\sum_{k=1}^{M} L_{ki} p(\mathbf{x} / \omega_k) P(\omega_k) < \sum_{q=1}^{M} L_{qj} p(\mathbf{x} / \omega_q) P(\omega_q)$$

Suppose $L_{ij} = 1 - \delta_{ij}$ where δ_{ij} if i=j and $\delta_{ij}=0$ if $i\neq j$.

$$r_{j}(x) = \sum_{k=1}^{M} (1 - \delta_{kj}) p(x / \omega_{k}) P(\omega_{k})$$
$$= p(x) - p(x / \omega_{j}) P(\omega_{j})$$

The Bayes classifier assigns a pattern x to class ω_i if

$$p(\mathbf{x}) - p(\mathbf{x} / \omega_i) P(\omega_i) < p(\mathbf{x}) - p(\mathbf{x} / \omega_j) P(\omega_j)$$
or
$$p(\mathbf{x} / \omega_i) P(\omega_i) > p(\mathbf{x} / \omega_j) P(\omega_j) \qquad j = 1, 2, ... M; j \neq i$$

Decision function for 0-1 loss function

$$d_j(\mathbf{x}) = p(\mathbf{x} / \omega_j) P(\omega_j) \qquad j = 1, 2, \dots M$$

where a pattern vector x is assigned to class ω_i if $d_i(x) > d_j(x)$ for all $j \neq I$

Bayes classifier for Gaussian pattern classes:

• Example: 1-D and 2 Classes problem

Bayes decision function is given by

$$d_i(x) = p(x/\omega_j)P(\omega_j)$$

$$= \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left[-\frac{(x-m_j)^2}{2\sigma_j^2}\right]P(\omega_j) \qquad j = 1,2$$

Example: n-dimensional case

$$p(x/\omega_j) = \frac{1}{(2\pi)^{n/2} |C_j|^{1/2}} \exp\left[-\frac{1}{2}(x-m_j)^T C_j^{-1}(x-m_j)\right]$$

where the mean and the covariance matrix are given by

$$\boldsymbol{m}_{j} = \boldsymbol{E}_{j} [\boldsymbol{x}] \quad \text{or } \frac{1}{N_{j}} \sum_{\boldsymbol{x} \in \omega_{j}} \boldsymbol{x}$$

$$\boldsymbol{C}_{j} = \boldsymbol{E}_{j} [(\boldsymbol{x} - \boldsymbol{m}_{j})(\boldsymbol{x} - \boldsymbol{m}_{j})^{T}] \quad \text{or } \frac{1}{N_{j}} \sum_{\boldsymbol{x} \in \omega_{j}} \boldsymbol{x} \boldsymbol{x}^{T} - \boldsymbol{m}_{j} \boldsymbol{m}_{j}^{T}$$

IV. CLUSTERING METHODS

- Try to find natural groupings(clusters) of patterns
- Minimize a performance index
- Iterative processing
- Unsupervised learning(No labeled data are necessary)

1. K-means Algorithm

Performance index(sum of the squared errors) given by

$$J = \sum_{j=1}^{N_c} \sum_{x \in \omega_j} \left\| x - \boldsymbol{m}_j \right\|^2$$

where N_C is the number of clusters, ω_i is the set of patterns belonging to the jth cluster, and

$$m_j = \frac{1}{N_j} \sum_{x \in \omega_j} x$$
 is the sample mean vector of set ω_j

K-Means Algorithm

Specify the number of cluster N_C

Choose an initial set of cluster centers $m_i(0)$, $j=1, 2, ..., N_C$

Set an iteration count I = 1

Do Until
$$||m_j(I+1) - m_j(I)|| < \epsilon$$
 j=1, 2, ..., NC

I = I + 1

For all patterns x

Assign x to ω_i if $||x-m_i|| < ||x-m_i||$, $i=1,2,...,N_C$ and $i\neq j$ where ||*|| is any distance measure $m_j(I) = \frac{1}{N_j} \sum_{x \in \omega_j} x$ $j=1,2,...N_C$

End Until

2. Fuzzy K-means Algorithm

Performance index is given by

$$J_{m} = \sum_{k=1}^{Nn} \sum_{i=1}^{Nc} (\mu_{ik})^{m} (d_{ik})^{2}$$

where Nn is total number of patterns, Nc is the number of clusters, $m \in [1, \infty]$, $(d_{ik})^2$ is any distance measure, and μ_{ik} is the membership of the kth pattern belonging to the ith cluster.

Constraint:

$$\sum_{i=1}^{Nc} \mu_{ik} = 1 \text{ and } \mu_{ik} \in [0,1]$$

Fuzzy K-Means Algorithm

Specify the number of cluster N_C , and Fix mChoose an initial set of cluster centers $m_j(0)$, $j=1, 2, ..., N_C$ Set an iteration count I=1

Do Until $||m_j(l+1) - m_j(l)|| < \varepsilon$ j=1, 2, ..., NC

I = I + 1

For all patterns x_k

$$\mu_{ik} = \frac{1}{\sum_{j=1}^{N_C} \left(\frac{d_{ik}}{d_{jk}}\right)^{(2/m-1)}} \quad i=1,2,...,N_C$$

Update the cluter centers by

$$m_i(I) = \sum_{k=1}^{Nn} (\mu_{ik})^m x_k / \sum_{k=1}^{Nn} (\mu_{ik})^m$$

End Until

Example: Trajectory of cluster centers in 3 classes problem.

Iteration count = 1, obj. fcn = 13.645593
Iteration count = 2, obj. fcn = 13.456014
Iteration count = 3, obj. fcn = 12.921680
Iteration count = 4, obj. fcn = 11.836673
Iteration count = 5, obj. fcn = 9.647694
Iteration count = 6, obj. fcn = 5.184969
Iteration count = 7, obj. fcn = 4.240686
Iteration count = 8, obj. fcn = 4.216349
Iteration count = 9, obj. fcn = 4.215861
Iteration count = 10, obj. fcn = 4.215851
Iteration count = 11, obj. fcn = 4.215851

