Synthesis of Hydroxy-terminated Poly(propylene carbonate)

Hydroxy-terminated Poly(propylene carbonate)의 합성

  • Jung, S.M. (Dept. of Chem. Eng., Pusan National University) ;
  • Moon, J.Y. (Dept. of Chem. Eng., Pusan National University) ;
  • Park, D.W. (Dept. of Chem. Eng., Pusan National University) ;
  • Park, S.W. (Dept. of Chem. Eng., Pusan National University) ;
  • Lee, J.K. (Dept. of Polymer Science and Eng., Pusan National University)
  • Received : 1997.12.11
  • Accepted : 1998.01.24
  • Published : 1998.04.10

Abstract

The synthesis of hydroxy-terminated poly(propylene carbonate)(HTPPC) was performed by the reaction of propylene carbonate(PC) with alcohol initiator using metal alkoxides, crown ethers and quaternary onium salts as catalysts. The effects of catalyst structure, types and concentration of alcohol, and solvent were investigated. Among the alkoxide catalysts tested, the ones with higher Lewis acidity and with more nucleophilic alkoxide anion showed higher catalytic activity. Mixed catalysts of metal alkoxied and crown ether showed higher conversion of PC than metal alkoxide alone. Quaternary onium salts of bulky cation exhibited higher catalytic activity. High polar solvent showed higher yield of HTPPC and the yield increased with the decrease of [PC]/[Initiator] ratio.

본 연구는 metal alkoxide, 크라운에테르, 4급 onium염 등을 촉매로 사용하여 프로필렌카보네이트(PC)와 알콜 개시제로부터 hydroxy-terminated poly(propylene carbonate) (HTPPC)를 합성하는데 관한 것이다. 촉매의 종류와 골격구조, 알콜의 종류와 농도, 그리고 용매가 반응에 미치는 영향을 고찰하였다. Metal alkoxide의 Lewis acidity가 크고 alkoxide 음이온의 친핵성이 클수록 높은 반응활성을 나타내었다. Metal alkoxide와 크라운에테르의 혼합촉매는 metal alkoxide 단독 촉매보다 높은 프로필렌 카보네이트 전화율을 보였고, 4급 onium염 촉매의 경우 양이온의 크기가 크고 음이온의 친핵성이 클수록 높은 활성을 나타내었다. 또한 용매의 극성이 높고 [PC]/[Initiator]의 농도 비가 낮을수록 HTPPC의 수율이 높게 나타났다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Phase Transfer Catalysis C. M. Starks;C. L. Liotta;M. Halpern
  2. J. Polym. Sci., Polym. Chem. v.31 N. Kihara;T. Endo
  3. J. Org. Chem. v.58 N. Kihara;N. Hara;T. Endo
  4. Makromol. Chem. v.155 S. Inoue;M. Kobayashi;H. Koinuma;T. Tsuruta
  5. J. Polym. Sci. Polym. Chem. Ed. v.11 M. Kobayashi;S. Inoue;M. Koinuma;T. Tsuruta
  6. Progr. Polym. Sci. Japan v.8 S. Inoue
  7. Polym. J. v.2 S. Inoue;H. Koinuma;T. Tsuruta
  8. Makromol. Chem. v.143 S. Inoue;H. Koinuma;Y. Yokoo;T. Tsuruta
  9. Macromol. v.19 T. Aida;S. Inoue
  10. Polym. J. v.16 Y. Hino;Y. Yoshida;S. Inoue
  11. Makromol. Chem. v.178 H. Koinuma;H. Hirai
  12. Makromol. Chem. Rapid. Commun v.7 L. Vogadanis;W. Hoitz
  13. EP. 93-119220.7
  14. Energy Conv. & Management v.38 D. W. Park;J. Y. Moon;J. G. Yang;C. S. Ha;J. K. Lee
  15. React. Kinet. Catal. Lett. v.61 J. Y. Moon;J. G. Yang;S. M. Jung;D. W. Park;J. K. Lee
  16. J. of Korean Ind & Eng. v.7 D. W. Park;J. Y. Moon;J. G. Yang;J. K. Lee
  17. ACS Symposium Series 286 Ring-Opening Polymerization J. E. McGrath