The Toughness of Polyurethane and Epoxy Resins IPNs

폴리우레탄-에폭시 IPNs의 강인성

  • Kim, Jong Seok (School of Chemical Engineering and Technology, Chonbuk National University) ;
  • Hong, Suk Pyo (School of Chemical Engineering and Technology, Chonbuk National University)
  • 김종석 (전북대학교 화학공학부) ;
  • 홍석표 (전북대학교 화학공학부)
  • Received : 1998.03.13
  • Accepted : 1998.05.12
  • Published : 1998.06.10

Abstract

Interpenetrating polymer networks(IPNs) were prepared from castor oil-type polyurethanes(PUs) and epoxy resin. Two types of PU were prepared by using polypropylene ether glycol(PPG) as a chain extending agent and caster oil(CO) as a crosslinking agent. COPU/epoxy simultaneous interpenetrating polymer networks(SINs) based on CO had a better compatibility over the all composition than PPGPU/epoxy SINs based on PPG. The flexural strength of all PPGPU/epoxy SINs was decreased with decreasing entanglement of networks. COPU/epoxy SINs showed the higher fracture toughness and mechanial properties than the PPGPU/epoxy SINs. Fracture surfaces of all of the SINs showed the localized shear deformation and crack deflection rather than generation of stress whitening associated with the cavitation.

에폭시수지와 caster oil(CO)형 폴리우레탄(PU)은 상호침투고분자(IPNs)를 형성하였다. 사슬연장제인 polypropylene ether glycol(PPG)와 가교제인 CO를 사용하여 두 종류의 폴리우레탄을 제조했다. CO를 이용한 COPU/epoxy의 동시중합 상호침투고분자(SINs)는 PPG를 이용한 PPGPU/epoxy SINs보다 상용성이 좋았다. PPGPU/epoxy SINs의 전조성에서 가교구조의 얽힘정도가 감소함에 따라 굴곡강도가 감소하였다. COPU/epoxy SINs은 PPGPU/epoxy SINs에 비해 기계적 물성과 파괴인성이 우수하였다. 실험 결과, 모든 SINs의 파괴단면에서 폴리우레탄의 공동화에 의한 응력백화 현상보다는 전단변형과 크랙의 편향이 관찰되었다.

Keywords

References

  1. J. Appl. Polym. Sci v.65 L. Becu;A. Maazouz;H. Sautereau;J. F. Gerard
  2. J. Polym. Sci. Polym. Phys. Ed v.31 H. J. Sue;E. I. Garcia;N. A. Opchard
  3. Polym. Eng. Sci. v.36 H. R. Azimi;R. A. Pearson;R. W. Hertzberg
  4. Advances in Chemistry v.233 Toughnened Plastics I : science and engineering R. A. Pearson;C. K. Riew;A. J. Kinloch
  5. Polym. Eng. Sci. v.36 D. S. Kim;K. Cho;J. K. Kim;C. E. Park
  6. J. Polym. Res. v.3 H. H. Wang;J. C. Chen
  7. Polym. Eng. Sci. v.35 Y. C. Chou;L. J. Lee
  8. Polym. Mater. Sci. Eng. v.65 X. Han;Y. Wang;S. Pan;Q. Zheng
  9. Polym. Eng. Sci. v.37 L. H. Fan;C. P. Hu;S. K. Ying
  10. Polym. Mater. Sci. Eng v.60 L. H. Sperling;C. E. Carraher
  11. J. Appl. Polym. Sci v.39 T. Hur;J. A. Manson;R. W. Hertzberg;L. H. Sperling
  12. J. Am. Oil Chem. Soc. v.51 F. C. Naughton
  13. Macromolecules v.12 N. Devia;J. A. Manson;L. H. Sperling
  14. J. Appl. Polym. Sci. v.29 Z. Petrovic;D. Fajnik
  15. J. Appl. Polym. Sci. v.43 J. G. Homan;X. H. Yu;T. J. Connor;S. L. Cooper
  16. Bull. Phys. Soc. v.1 T. G. Fox
  17. Macromolecules v.9 S. C. Kim;D. Klempner;K. C Frisch;H. L. Frisch
  18. Poym. Mater. Sci. Eng. v.63 D. Li;X. Li;A. F. Yee
  19. J. Mater. Sci. letter v.11 Y. Huang;A. J. Kinloch
  20. J. Mater. Sci. v.15 S. Kunz-Douglass;P. W. Beaumant;M. F. Ashby
  21. J. Polym. Sci. Polym. Phys. Ed. v.28 K. H. Hsieh;J. L. Han