Effect of Concentration Polarization on The Pervaporation of Aqueous Chlorinated-Organic Solution

유기염화물 수용액의 투과증발에 미치는 농도분극의 영향

  • Cho, Min-Suk (Department of Chemical Engineering, Chonnam National University) ;
  • Kim, Seung-Jai (Department of Environmental Engineering, Chonnam National University) ;
  • Kim, Jin-Hwan (Department of Chemical Engineering, Chonnam National University)
  • Received : 1998.03.20
  • Accepted : 1998.06.16
  • Published : 1998.10.10

Abstract

The pervaporation experiments of aqueous solutions of trichloroethylene (TCE) and chlorobenzene (CB) through the silicone rubber (polydimethylsiloxane, PDMS) membrane were carried out and the effect of concentration polarization on the separation characteristics was investigated. The resistance-in-series model was used to explain the boundary layer resistance. It was clear that the concentration polarization phenomenon had a significant effect on the permeation behavior in the pervaporation separation of the trace organic chlorides from aqueous solutions. With the same membrane thickness, the permeation of TCE, which has a stronger affinity for the PDMS, appeared to be more influenced by the boundary layer resistance than that of CB. The effect of boundary layer resistance was reduced and the membrane resistance became dominant with increasing membrane thickness at a given hydrodynamic condition. The separation factor was increased to approach the intrinsic separation factor of the membrane with its thickness.

실리콘고무 (polydimethylsiloxane, PDMS)막에 의한 trichloroethylene (TCE)과 chlorobenzene (CB)수용액의 투과증발실험을 수행하고 농도분극이 분리특성에 미치는 영향을 연구하였다. 경계층저항은 직렬저항모델을 사용하여 설명하였으며, 수용액으로부터 미량의 유기염화물을 제거하는 투과증발에서는 농도분극현상이 투과거동에 중요한 영향을 미치고 있음을 확인할 수 있었다. 같은 막두께에서, 막에 대한 친화력이나 선택투과성이 더 큰 TCE가 CB수용액보다 경계층저항의 영향이 더 크게 나타났다. 막두께가 증가할수록 경계층저항의 영향은 감소하고 막저항이 지배적이 되며, 겉보기분리계수는 증가하여 막의 고유분리계수에 가까워졌다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. J. Membrane Sci. v.30 T. Q. Nguyen;K. Nobe
  2. J. Membrane Sci. v.61 H. H. Nijhuis;M. H. V. Mulder;C. A. Smolders
  3. Pervaporation Membrane Separation Process R. Y. M. Huang
  4. J. Membrane Sci. v.1 P. Aptel;N. Challard;J. Cuny
  5. J. Membrane Sci. v.101 A. S. Michaels
  6. Membrane Journal v.4 B.-K. Oh;S.-Y. Ha;S.-T. Ha;Y.-M. Lee
  7. J. Membrane Sci. v.65 B. Raghunath;S.-T. Hwang
  8. J. Membrane Sci. v.109 J. G. Wijmans;A. L. Athayde;R. D.anmiels;J. H. Ly;H. D. Kamaruddin;I. Pinnau
  9. J. Membrane Sci. v.93 W. Ji;S. K. Sikdar;S-T. Hwang
  10. J. Membrane Sci. v.94 X. Feng;R. Y. M. Huang
  11. Handbook of Chemical Property Estimation Methods W. J. Lyman;W. F. Reehl;D. H. Rosenblatt
  12. J. Membrane Sci. v.75 B. Raghunath;S.-T. Hwang
  13. Enivron. Prog. v.9 C. Lipski;P. Cote
  14. Envir. Sci. & Tech v.13 D. Mackay;W. Y. Shiu;R. P. Sutherland
  15. Proceedings of Third International Conference on Pervaporation Processes in the Chemical Industry Pierre Cote;Chris Lipski
  16. J. Membrane Sci. v.36 R. Psaume;Ph. Aptel;Y. Aurelle;J. C. Mora;J. L. Bersillon