Preparation of Glycidylmethacrylate-Divinylbenzene Copolymers Containing Phosphoric Acid Groups and Adsorption Characteristics of Uranium(I) - Preparation of Glycidylmethacrylate-Divinylbenzene Copolymers Containing Phosphoric Acid Groups and Their Adsorption Characteristics of Uranium -

인산기를 함유한 Glycidylmethacrylate-Divinylbenzene 공중합체의 제조와 우라늄 흡착특성(제1보) - 인산기를 함유한 GMA-DVB 공중합체의 제조와 물성 -

  • Huh, Kwang-Sun (Department of Industrial Chemistry, Kyungnam College of Information & Technology) ;
  • Sin, Se-Geun (Department of Industrial Chemistry, Kyungnam College of Information & Technology)
  • Received : 1998.03.20
  • Accepted : 1998.07.06
  • Published : 1998.10.10

Abstract

The macroreticular (MR) type glycidylmethacrylate (GMA)-divinylbenzene (DVB) copolymer (polyglycidylmethacrylate) beads (RG) were prepared by a suspension polymerization using 0~100 vol % of 2,2,4-trimethylpentane (TMP) as a diluent. Macroreticular type cation exchange resins containing phosphoric acid groups (RGP) were prepared by the reaction of GMA-DVB copolymer and poly (glycidyl methacrylate) bead (RG) with phosphoric acid in the presence of benzene. In this study, the effect of degree of crosslinking and the amount of the diluent on physical properties and adsorbability of uranium of RGP resins were investigated respectively. The chemical and physical properties of RGP resins were affected by both of the amount of the diluent and the degree of crosslinking. The effect of degree of crosslinking on the adsorbed amount of uranium for RGP resins were decreased in the order of $$RGP-10(50){\sim_=}RGP-1(50)>RGP-2(50)>RGP-5(50)>RGP-0$$. The effect of the diluent amount were as follows RGP-2(100)>RGP-2(75)>RGP-2(50)>RGP-2(30)>RGP-2(0). The crosslinking degree effect on uranium adsorbability depended on pore structure, cation exchange capability and swelling ratio. On the other hand, the effect of the diluent amount were relied on surface area and pore structure raher than cation exchange capability.

친수성 단량체 glycidylmethacrylate (GMA)에 가교제인 divinylbenzene (DVB)과 세공형성제인 2,2,4-trimethylpentane (TMP)량을 각각 0~10 mol %과 0~100 vol %로 변화시켜 현탁중합법으로 macroreticular (MR)형 GMA-DVB 공중합체 (RG라 칭함)을 합성하였다. 이들 공중합체를 벤젠 존재하에서 인산으로 인산화시켜 인산기를 갖는 거대망상형 양이온 교환수지 (macroreticular type cation exchange resins containing phosphoric acid groups, RGP)을 제조하였으며, 이들 수지에 대한 물성과 우라늄의 흡착능을 고찰하였다. RGP수지들의 물성은 합성시 가교도와 희석제량에 따라 영향이 있었으며, 우라늄의 흡착능은 가교도 영향인 경우 $$RGP-10(50){\sim_=}RGP-1(50)>RGP-2(50)>RGP-5(50)>RGP-0(50)$$ 이며, 희석제량의 영향인 경우는 RGP-2(100)>RGP-2(75)>RGP-2(50)>RGP-2(30)>RGP-2(0)순이였다. RGP수지들의 물성과 우라늄의 흡착능에서 가교도의 영향인 경우 RGP 수지의 세공구조, 양이온 교환 용량 및 팽윤비에 의존하며, 희석제량의 영향인 경우는 양이온 교환 용량보다도 비표면적과 세공구조에 더 영향이 있었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. 日本化學會誌 江川博明;原展日路史;野中儆正
  2. J. Macromol. Sci. Chem v.A25 H. Egawa;T.Nonaka;M. Nakayama
  3. J. Chem. Eng. Japan v.23 T. Kato;T. Kago;K. Kusakabe;S. Morooka;H. Egawa
  4. J. Appl. Poly. Sci. v.3 no.4 H. Egawa;M. Nakayama;T. Nonaka;H. Yamamoto;K. Uernura
  5. J. Appl. Poly. Sci. v.36 M. Nakayama;K. Uemura;T. Nonaka;H. Egawa
  6. J. Appl. Poly. Sci. v.36 T. Hirotsu;S. Katoh;K. Sugasaka;N. Tanai;M. Seno;T. Itagaki
  7. Ind. Eng. Chem. Res. K. Saito;T. Hori;S. Frursaki;T. Sugo;J. Okamoto
  8. Bull. Soc. Seawater Sci. v.42 N. Takagi;T. Hirotsu;J. Sakakibara;S. Katho;K. Sugasaka
  9. Ind. Eng. Chem. Res. v.30 T. Takeda;K. Saito;K. Uezu;S. Furusaki;T. Sugo;J. Okamoto
  10. Ind. Eng. Chem. Res. v.30 T. Takeda;K. Saito;K. Uezu;T. Sugo;J. Okamoto
  11. J. Appl. Chem. v.9 J. Kennedy
  12. J. Appl. Poly. Sci. v.29 H. Egawa;T. Nonaka;M. Ikari
  13. J. Chem. Tech. Biotechnol. v.30 K. Shakir;S. G. Beheir
  14. J. Appl. Poly. Sci. v.30 H. Egawa;T. Nonaka;H. Maeda
  15. J. Appl. Poly. Sci. part A v.24 T. Hirotsu;S. Katoh;K. Sugasaka;M. Sukuragi;K. Ichimura;Y. Suda;M. Fujishima;Y. Abe;T. Misonoo
  16. 日本化學會誌 前田弘憲;江川博明
  17. J. Chem. Soc. Dalton Trans. T. Hirotsu;S. Katoh;K. Sugasaka;N. Takai;M. Seno;T. Itagaki
  18. Sep. Sci. Technol. v.21 T. Sakaguchi;A. Nakagima
  19. J. Am. Chem. Soc. v.107 P. Fux;J. Largrange;P. Lagrange
  20. Powder Surface Area and Poresity(2nd) S. Lowell;J. E. Shields;B. Scarlott
  21. 化學工學 v.28 徐吉德;金鐘現;許光善
  22. イオン交通樹脂 キレ-ト樹脂 北柔(編)
  23. J. Polymer Sci. Part C v.16 K. Kum;R. Kunin
  24. J. Appl. Polymer Sci. v.17 W. L. Sederel;J. DE Jong
  25. 高分子新素材 便覽 高分子學會(編)