Preparation of Nylon6,6/Polyaniline Conducting Composite and Their Electrical Properties with the Content of Plasticizer

가소제 첨가에 따른 Nylon6,6/Polyaniline 전도성 복합체의 제조 및 전기적 성질

  • Lee, Wan-Jin (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Hyo-Yong (Faculty of Applied Chemical Engineering, Chonnam National University)
  • 이완진 (전남대학교 공과대학 응용화학공학부) ;
  • 김효용 (전남대학교 공과대학 응용화학공학부)
  • Received : 1998.05.06
  • Accepted : 1998.08.24
  • Published : 1998.12.10

Abstract

The conducting composites were prepared by blending of polyaniline(PANI) as conducting polymer and nylon6,6 as matrix in m-cresol. The PANI was protonated with alkylbenzenesulfonic acid such as camphorsulfonic acid(CSA) or dodecylbenzenesulfonic acid(DBSA). The miscibility of the composites was improved and the electrical conductivity was increased by adding dioctylphthalate(DOP). The electrical conductivity of the composites depending on the amount of protonating agent and PANI complex and the morphology were investigated. When it was protonated with DBSA having long alkyl chain and the content of PANI complex was 25 wt%, the electrical conductivity of the compsosite was increased up to 1.02 S/cm.

Nylon6,6를 matrix로 사용하여 전도성 고분자인 polyaniline(PANI)과의 전도성 복합체를 블렌딩 방법에 의하여 제조하였다. 블렌딩은 m-cresol를 용매로 사용하였으며 PANI는 camphorsulfonic acid(CSA) 혹은 dodecylbenzenesulfonic acid (DBSA)와 같은 알킬 벤젠 술폰산으로 양성화시켰다. 또한, 비상용성인 두 고분자간의 혼화성을 개선시키기 위하여 가소제를 첨가하여 상분리를 최대한 억제시켰다. 제조된 전도성 복합체에 대하여 양성화제의 유무에 따라 또는 PANI의 함량에 따라 전기전도도 및 몰포로지 등을 측정 분석하였다. PANI 착체의 함량이 증가할수록 전기전도도는 증가하였고, 알킬 사슬의 길이가 긴 DBSA로 양성화된 PANI(25wt%)과 가소화된 nylon6,6의 전도성 복합체의 전기전도도는 1.02 S/cm까지 향상되었다.

Keywords

Acknowledgement

Supported by : 전남대학교

References

  1. J. Chem. Soc. Chem Commun H. Shirakawa;E. J. Louis;A. G. MacDiarmid;C. K. Chiang;A. J. Heeger
  2. Polym Eng. Sci. v.14 J. Meyer
  3. Phys. Rev. Lett v.34 R. L. Greene;G. B. Street;L. J. Suter
  4. Phys. Rev. Lett. v.39 A. G. MacDiarmid;C. K. Chiang;C. R. Findher, Jr.;Y. W. Park;A. J. Heeger;H. Shirakawa;E. J Louis;S. C. Cao
  5. Synth Met. v.48 Y. Cao;P. Smith;A. J. Heeger
  6. Synth Met. v.57 Y. Cao;P. Smith;A. J. Heeger
  7. J. Chem. Soc. Chem. Commun O. Niwa;T. Tamamura
  8. Polym Commun v.31 S. Yang;E. Ruckenstein
  9. Synth Met. v.72 E. Benseddik;M. Makhlonki;J. C. Bernede;S. Lefant;A. Pron
  10. J. Macromol. Sci. v.C-1 D. R. Paul;J. W. Barlow
  11. Polymeric Materials J. A. Brydson
  12. Synth Met. v.65 A. G. MacDiarmid;A. J. Epstein
  13. Synth. Met. v.69 A. G. MacDiarmid;A. J. Epstein
  14. Synth. Met. v.72 J. K. Avlyanov;Y. Min;A. G. MacDiarmid;A. J. Epstein
  15. Materials Science and Engineering(3rd ed.) William D. Callister