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Abstract

This paper considers the single-product production and transporfation problem with discrete
time, dynamic demand and finite time horizon, an extension of classical dynamic lot-sizing
model. In the model, multiple freight container types are allowed as the transpartation mode
and each order {product) placed in a period & shipped immediately by containers in the period.
Moreover, each container has type-dependent carrying capacity restriction and of most one
container type is cllowed in each shipping period. The unit freight cost for each container type
depends on the size of ifs carrying copacity. The total freight cost is proportional to the number
of each container type employed. Such a freight cost is considered os another set-up cost. |
Also, it is ossumed in the model that produdtion and inventory cost functions ore dynamically
concave and backlogging is nof allowed. The objective of this study is to determine the optimal
production production policy and the optimal transportation policy simultaneously that minimizes
the totol system cost (including production cost, inventory holding cost, and freight cosf) to
sadisfy dynamic demonds aver o finite time horizon. In the anaiysis, the optimal solution
properties are choracterized, based on which a dynamic programming algorithm is derived.
The solution algorithm is then illustrated with a numerical example,

1. Introduction and for inventory levels to be observed only at the end
of each period. They have often considered dynamically-

The single-product deterministic lot-sizing models stem- variant concave cost functions for the objective of finding
ming from the work of Wagner and Whitin {15] have the optimal lot size that minimizes the total producticn
divided time horizon into discrete-periods, and aliowed and inventory cost to satisfy dynamic demands over a
for demand to occur dynamically over discrete periods finite time horizen. These models have been called
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Dynamic Lot-Sizing Model (DLSM) in the literature.
Zangwill [16, 17] studied a problem with backlogging
al.owed. Sobel [13] censidered a problem with start-up
ccst allowed. Baker er af [1]. Florian and Klein [3],
Lambert and Luss [6], Love [9], and Swoveland [14]
aralyzed various problems with a variety of different
limnited production capacities. Bitran and Yanasse [2] and
Florian er af. [4] studied the problem complexity and the
alzorithm complexity for DESMs. Sung and Park [13]
investigated rolling schedules for 2 single-facility multi-
product problem. Sung and Lee [12. 13] studied rolling
schedules for a problem with start-up cost allowed and
also investigated the effect of setup cost reduction in a
problem with multiple finite production rates incorporated.

As seen from the literature, DLSMs have not considered
ary production-inventory problem incorperating transpor-
tation activities. These days, the issue of transportation
scheduling for shipping products {or delivering orders) by
proper transportation modes at right time becomes
significantly important in production for distribution)
management, of in import and export activities. Each
cempany uses a freight container as a transportation unit
to ship its manufactured products {or ordered products)
to customers, which may lead to a managerial decision
problem to select fremt or ask for services with)
appropriate types from among & variety of different
container types and 1o determing about how many of therm
may be needed. This provides us with a motivation to
consider the optimal production {lot-sizing) and transpor-
tation problem incorporating production-inventory func-
tions and transportation functions together.

Several articles have studied the extended works of the
classical DLSM. Lippman [8] studied two deterministic
multi-period production plancing models; monotone cost
modeﬂl and concave model. Hwang and Schn [3] dealt
with 2 DLSM in which the transportation mede and the
order size for a deteriorating product were simultaneously
considered. However, they considered no capacity restric-

tion on the transportation mode. Lee [7] considered a

e i

DLSM allowing set-up cost including a fixed charge cost
and a freight cost, where a fixed single container type
with limited carrying capacity is considered and the freight
cosl js proportional 1o the number of containers used.

This paper considers the single-preduct production and
transportation model with discrete time, dynamic demand
and finite time horizon, an extension of classical dynamic
lot-sizing model. [n the model, M container types each
having type-dependent carrying capacity are allowed as
the trapsportation mode but at most one of them can be
used (rented) in each shipping period. Also, each order
{product) placed in a pericd is shipped immediately by
containers in the period. The unit freight cost for each
container type depends on the size of its carrying capacity
and the total freight cost is proportional to the number
of each continer type employed. Thus, such a freight
cost can be considered as the additional multiple set-up
cost. It is assumed in the model that production and
inventory cost functions are dynamically concave and
backlogging is not allowed. The objective of the model
is then to determine the optimal production (lot-sizing)
and transportation policy that minimizes the total system
cost Gneluding production cost, inventory holding cost.
and freight cost) to satisfy dynamic demands over finite
time horizon.

The proposed problem is described and expressed in a
mathematical model in Section 2. Tn Section 3, the optimal
solution properties are characterized. Section 4 presents a
dynamic programming algorithm for finding the optimal
solution. A numerical example is solved to illusirate the
algorithm In Section 3. Section 6 gives some concluding

remarks.
2. Model Formulation

Without loss of generality, it is assumed that for any
t, M container types have their unit freight cosis f,. f.
co, Fy with £30, fu=max|f) and f4F,.. j= 1 2, - M-L,
which are related to their carrying capacities W, W, -,



W, with W0, W,=max{W}. and W{W,, j=1, 2, -,
M-

Some other notations are introduced as follows:

T = length of the time horizon,

¢ = ftime index {r = 1, 2, -, T),

j = container type index §f = I, 2, - M),
d, = amount demanded in period £,

x, = amount produced (ordered) in period ¢ and
stupped by container type j,
¥, = number of container type j employed in period

¢ (nonpegative integer).

[, = amount of inventory at the end of period 1/,
S, = setwp cost in period 4,

P, = unit production (ordering) cost in period ¢,
k= unit inventory holding cost from period ¢ to

period #+1, and
6fx) = 1 if x > 0, and O otherwise.
The proposed problem has the objective of determining
a policy (¥, ) for =/, 2, -, T'and j=1, 2, -, M
such that all the demands over the given horizon are
satisfied at the minimum total cost. Therefore, the T-
period problem can be formulated in a mathemarical

programming as follows:

Minimize o u bl |
XYy E 58 'EI.‘{"; +p{‘ EI,‘(U- +hd I+j§[ﬁj)!j {n
M
5. =1+ Lxg-d, Wt {2)
R
SW ey, Vi, (3)
.'w
3 5{.\'!1-] <1 ¥ (4)
=
1=f=0, (5)
20,120, vy, | {6)
¥, : nonnegative integer. Y7, j. n

A Dynamic Production and Transportation Maodel with Multiple Freight Container Types 159

Note that if M=1 and all the relevant cost functions are
time-invariably concave, the model reduces to that of Lee
{7], and that if M=1] and £,=0 for all 1. the model reduces
to the Wagner-Whitin model {15]. The constraints (2)-(7}
define a closed bounded convex set and the objeciive
function is concave, so that it attains its minimum at an
extreme poini of the convex sel. In the next section, the
extreme points shall be characterized further in association
with the optimal solution,

Firstly, the following property is derived, which plays

a central role in our approach.

Theorem 1 {Inventory Decomposition Property).
Suppose that the constraint

[=0, for some = | 1,2, 7-11, {83

is added 10 those described in {2)-(7), then the optimal
solution to the T-period problem can be found by
independently finding solutions to the subproblems over
intervals (1, ¢} and (1, T).

Proof. The production costs depend only on the amount
produced in a particular period and the transportation costs
depend only on the number of each container type
employed in such 2 production period. Moreover, the
lnventory costs associated with the subproblem over the
interval (r, T) also depend only on production decisions
over the interval by virtue of (8). This completes the proof.
QED.

Theorem 1 leads 1o a dynamic programming recursion
using the periods 0,1,-+,T as states. We define the {z,v)-
problem as the problem of finding the optimal solution
over periods w+f, u+2, -, v with the constraints

f=1=0and {) 0 for u{{v. (9}

Then, let D, be the corresponding minimem cost of

the (av)-problem. Also, let F, be the cost associated with
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the optimal solution over periods 0,1+, v, given that 7=
6. Then we can solve the T-period problem through the

following recursive eguations;
F ;= 0,

F\_= 02}:‘21, { Fu+ Du\' } !
forv=142 .T (10)

Unfortunately, this recursion may not be too useful,
since, in general, finding the values of D, can be almost
as difficult as solving the original problem. Moreover, the
optimal solution properties that were characterized by Lee
[7] may not hold in our problem. Hence, to seek a better
way of finding D,, we will characterize the optimal

solution properties of the (u,v)-problem in the next section.
3. Optimal Solution Properties

Let peried + as a production point if E;fl xU-)O, and
period 5 as a regeneration poinr if I,=0. Also let period
k as an inventory point if [,{d,; Then, the following

property may be obiained.

Theorem 2. In the optimal solution of the T-period
problem, period ¢ must be a production point if period
(t-1) is an inventory point.

Proof. Consider any feasible solution (x,, ., .+, X5
and the correspending {7, /., ---. 1) determined by (2)-
{7). Since period {-1} is an inventory point, [, {d, and
M x50, This

1o shortage is allowed, we must have % X,

completes the proof.  QED.

Let container type m be a fraction comainer ai period
(if aW_ {x_ {{n+ W, for some n € | 0,12, |. Also,
let period { be a fraction point if that period includes a

fraction comiainer. Then, the following property is derived.

Theorem 3. In the (wv)-problem, there exists the

optimal solution that includes at most one fraction point,

Proof. Suppose that there exists the optimal selution
(X ryKgs " Xipgd With two fraction points s and ¢ (u+/
< g {t<v) in which container types m, and m, are fraction
containers at fraction points s and 1, respectively. Hence.
there exists xg, and x,, such that nswm,<'rsmx<(”5+ W .
for some #(=0,1,2,+) and n W, (5, {(a+1JW,_ for some
a(=0,12,--}. Let £=% min |x;, -0 W, (o DWW, -,
X W (1 OW,ox, min o 1y} Then we can
construct a new production plan (x,. e Xy Xy
such that x;m_‘=xm’-€. x;J:xsj for all j*m, X;m.:'rrmf z,
xzx,; for all j=m, and xexy for all j and k%5, fudk
Zv). Also, we can construct ancther production plan
ey K oy SUCh that x, =xo + €, xo=x,, for
all j&m, rLJ:xm‘- g, .ti,:x,j for all j%m, and “i—fﬂj for
all j and k=s, 1 (u(k<y). For any 0, (..
X 7 X\'M)t(x;uﬂ)l' '[;un)!‘ ""xirM) * ('rzuﬂ)l‘ ‘X‘Em')?
L )a‘ﬂ(x(w)v-‘(wl)r""'va)"'j(xiuH)r’"Ewl}v""-
gl +§(xiw),, Xy " iigg Also, two new production
plans (xjy, o Ko " Ko 809 (oo Ko™ o)
satisfy the constraint (2). It implies that (e, 0 %o
w1, X, is not an extreme point. Hence (X, . ¥
*', X, 13 not the optimal solution. This completes the

proof.  QED.

Before a solution procedure to find D, is presented.
the following property is further derived.

Corollary 1. For the (u,1)-problem, there exists the
optimal production plan such that for any production point
but mot a fraction point ¢ (u+ J{r<v), £ 0 and x=n -
W, for some j and some n, and x,=0 for all {%/, where
n, is a nonnegative integer,

Proof, From the result of Theorem 3, we know that
except a fraction point, any cther production point f cannot
become a fraction point. This completes the proof.
QE.D.
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4. A Solution Procedure for Computing
D,
The optimal sclution properties characterized in Section
3 provide some insight for generating all possible
praduction plans to compute D, Let W denote the greatest
common divisor of W, W.,---, W,.. If there is no common
divisor greater than one, let W=1. Let us define ¢, as
Ey L L di-n W, where n is some nonmegative
inieger and 0< &,{W. Then, the following property can
be easily derived from the theorems in Section 3.

Corollary 2. In the (u,v)-problem, there exists the
optimal solution such that
i} for fraction point 5 (u (s=v), x=k - W+ ¢, for some
J and some k€ { 0,10, and x =0 for all /=,
ii) for any production point ¢ and r¥s {u {s<v}, x=m *
W for some { and some me | 12,0, and x=0
for all i=1.

Based on Corollary 2, a solution procedure for
computing D,. is presented. Let
D, = cumulative demand for periods from s+1 through
t (e, DFT L, )
R, = set of feasible cumnlative production levels made
by period ! since period u+l,

X = element of K.

NG - I if X i‘ncludes a fraction point,
0 otherwise.

For r=u, R, has only one element, X,=0.

For r=u+i, 4+2, '+, v-1, R, can be generated from R, ,
by considering the following three cases derived from
Treorem 3.

0 When N(X_)=0 and MfX)=0, X, equals X, + &~

W, k=01n and D,{X <D,

ii) When N(X =0 and N(X)=1, X, equals X, +k « W+

£, k=01,-nand D {X,<D,.

iii} When N(X,J)=1 and N(X)=1, X, equals X, +% + W,

k=01, n, and D {X<D.
For t=v, R, has only one element, X=0,

Two variables Bitx}) and C( Xz} are inroduced
additionally as follows:
B(rx) = minimum freight cost to ship the production
amount x in period f, and
CltX,z) = minimum system cost associated with a
feasible cumulative production level X in
period ¢, u+l1<f<vy, where the production
level includes z fraction points and z is a
nennegative integer.
Note that from the result of Theorem 3, the number =
can have either 0 or 1.

Then Biix) satisfies the following equation;

B(r,x)=Flgng{f,j- oW, |, (n
where [~ y ] denotes the smallest integer that is greater
than or equal to y. Hence, C(¢,X,7) satisfies the following

recursive equations.

Clu, X, 0)=0, (12}
X, 0)= -
Xr-l £X,

ClEL, X, O1eSrh(X-D)BG, X X,),
if X=X, +AW and k€ {120},
Cl-L, X, . OhiX D,y

if X=X, for u+1<1<v and X, &R, (13)

Chx,1)= e
X 5%,
C(-1, X,,, O+S+h (XD )+Bl, XX, ),

[y 11

if X=X +kW+ ew and k€{0,1,-,n}
COGL X, D+S+h X -DWBGX X, ),
if X=X +mW and me{1,2,-n},

1, X, D+h(XD),
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if XzX, , for =url, w2, -, v and X,€R,. (14)

Then, D_=min {Cfv, D, ,0), Cfv, D, 1}}.

From Theerem 3 and Coerollaries 1 and 2, the following
ohservations about computing the equations (11)-{14) can
be obtained.

i) For u+[<t<v, the production levels D,,, D.,, -,
D., cannot be the element of R, because such
production levels lead the inventory level o be zero
in a period.

i) If mod(X, Wi=0, let Cft, X, l=c0, where mod{p,
g) denotes the remainder of p divided by g.
Otherwise, let Cft, X, O)=w,

iti) If e,=0, let £ft, X, f)=c0 for url=t<v and
X R,

iv) Consider the calculation of the recursive equation
(13). For u+I {t<v, if there does not exist some
type § such that mod(X-X,,, W)=0 for j=12,M,
then it implies that pericd 7 is a fraction point.
Hence, let. Cff, X, )=c0.

v} Consider the case satisfying X=X,+mW in the
recursive equation {14), For u+ / <t<v, if there does
not exist some type j such that mod(X.X,, W,j=0
for j=12,-- M, then it implies that peried ¢ is a
fraction point. Hence, let B{r, X-X,,}=.

vi) If there exists more than one production sequence
which has the equal cumulative preduction levels
in a period, then the sequence having a higher cost
can not be optimal.

It is noticed that the efficiency of the algorithm is
strongly dependent on the relative magnitude of the

greatest common divisor W.
5. A Numerical Exampie

Consider a simple 5-period problem with two freight
container types, where their camrying capacities W,=100
and W,=150 are considered. The relevant data including

cost parameters are given in Table 1.

T | i 2 3 4 5
d | % 150 20 40 50
§ | m & s 8 70
[ 7 8 8 8 7,
n 1 1 1 1 1
o | 100 s e 100 100
fo | 150 13 135 150 150

D, is selected 10 show the procedure of the recursive
equaticns (12)-(14).
Because the greatest common divisor of W, and W, is
50, it holds that W=30.
1D, DJ=190, 240} and so e,=mod(D, W) = mode
(240, 50)=40.
For t=0, R={0} and C(0,0,0)=0.
For =1, R={100, 140, 150, 150, 200, 240],
B100=min{100x 1, 150x 1}=100,
C(1,100,00= 70+ 7 X 100+ 1 X (100-90)+ 100=880,
(1,100,1)=00,
B{140)=min{ 100X 2, 150xI}=150,
(1,140,0)=c0,
C{1,140,1)=70+ 7 X 140+ 1 x (140-90}+ 150=1250,
Bl150}=min{100x 2, I50x I}=150,
C(1,150,00= 70+ 7 x 150+ 1 X {150-90)+ 150= 1330,
CU1,150,1)=00,
BU190)=min{ 700> 2, 150x2}=200,
C(1,190,0)=00,
C(1,190,1)=70+ 7 x 190+ 1 X (190-50)+ 200=1700,
B2060=min} 1002, 150x 2)=200,
£(1,200,0)=70+ 7 % 200+ 1 x (200-90)+200=1780,
€(1,200,1)=00,
B{240)=min (160 3, 150 % 2}=300,
C(1,240,0)=c0,
C(1,240,1)=70+ 7 X 240+ 1 x (240-90}+ 400=2200.
For =2, R={240},



For X=100,

B(2,240-100)=min{90x 2, 133x/}=135,

For X =140,

B(2240-140)=min{90 = 1, 135x1}=90,

For X=130,

B(2,240-150)=min{90 % I, 135x1}=90,

For X,=190, B{2,240-190)=00,

For X=200,

B(2,240-200)=min{90 % I, 135X 1}=90,

For X,=240, B(2,0)=0,

C(2,240,0)= 2,
€(2,240,1)=

A Dynamic Production and Transponation Model with Multiple Freight Container Types

min | C(1,100,00+ 50+ 6 % (240- 1003+ B(2,240-100)= 1905,
€(1,140,1)+ 50+ 6 % (240-140)+ B(2,240-140)=1990,
C{1,150,00+ 50+ 6 < (240-150)+ B(2,240-150)=2010,
CL1,190, 1+ 50+6 X (240-190)+ B(2,240-190)=20
C11,200,00+ 50+ 6 % (240-200)+ 8(2,240-200)=2160,
C(1,240,1+B(2,0)=2200}= 1905.

Hence D, =min {C(2,240,0), C(2,240,1)}=min{, 1905)=

163

1905.

Table 2 shows the compuiation summary of D, and F,
for 0 < u{v <3 The optimal production pelicy gives
the solution which produces 100 units in period 1, 150
units in period 2, 300 units in period 3. Also, the optimal
wransportation policy gives the solution that uses one unit
of the container type 1 in period 1, one unit of the
container type 2 in period 2, and three units of the
container type 1 or two units of the container type 2 in
period 3. Then the associated optimal total cost is at 3
4235,

6. Concluding Remarks

This paper has analyzed a dynamic production and
transportation model with multiple freight container types.
In the model, each container has type-dependent carrying
capacity restriction and ar most one container type is
allowed in each shipping period. The unit freight shipping

Table 2. Computaional Resuls

ol ul o | Production Amount § Container Type £.D F Optimal Soluticn
W | Associated withD,, |Associated withD,, | ™ | ¥ Iproduction Amount | Container Type
110 800 | ({90) {1} 800 800 | (90 {1}
2 0 | 1905 | {100,140} {12) 1905
! 1 | 1085 {150} 2} 1885 1885 | (90,150) {1,2)
1 0 | 3520 | (100,160,200} (1,2, 1) 3520
301 | 2700 {170,200} {1, 1) 3500
2 | 1840 : {220 {1 or 2) 3485 3485 | (90,150,220} {1.21 or 2)
¢ ;3835 | (100,150,250,0} (1,210r2 - 3835
4 1 13100 {200,210,0) {11or2 - 3900
2 | 1920 {260,0) {tor2 ) | 3805 |3805] (9015026000 | {121 or2)
3 500 {40} {1} 3985
L0 | 423 | (100150300000 | (121 0r2-) | 425 | 4235 | (10015030000 | (121 or 2-)
S 1| 3460 {160,300,0,0) (11 0r2-) | 4250
52 | 2410 {310,0,0) {1, - 4230
i3 950 | {90,0) (1) 4435
4 520 {50) (1) | 4325
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cost for each container type depends on the size of its
carrying capacity.

For the model, some important solution properties are
characterized, based upon which a forward dynamic
programming algorithm (10) was derived by paritioning
the given problem into smaller subproblems. The solution
procedure including the recursive equations {11}-(14) was
also developed to find the optimal value for each of such
subproblems (D,).

The algorithm has the complexity at the order of
O(-u)R, /WYM)} I finding D, for given x and v, where
R.=Z% . d
(T’ (R WM} in finding F.. Thus, the efficiency of the
proposed algorithm is strongly dependent on the ratio of
R, 10 W.

Our further research will consider an extension of the

. 50 in total at the complexity order of

problem where a general concave cost function is
incorporated and various comtainer types are allowed t©
employ together in ¢ach period.
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