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Production switching mechanism for an unreliable two-stage
production line
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Abstract

This paper deals with o production line which consists of two production stages that ore
separated by o finite storage buffer. The inventory level in the storoge buffer caontrols the
production rate of the preceding stage. Thot is, the production rate becomes high (low] when
the buffer inventory is low (high). We analyze the system characteristics utilizing the Markov
process theory and then find an optimal control policy which maximizes o given system profit
function. Also, a sensitivity analysis is mode to examine the effects of various system porameters

l. Introduction

Automatic transfer lines are frequentty adopted for mass
production systems. In these lines, workpieces pass
through successive machines with specific operations
being performed at each machine. A major causes of line
inefficiency are machine breakdowns and unbalances in
processing times. The storage buffers between Iwo
itdjacent machines are used to reduce the harmful effects
of interferences berween the machines. In this paper, we
consider an automatic transfer line which consists of two
unreliable machines with random processing times and a
finite boffer storage, as shown in Figure 1. In the system,
1aw production units come from the outside of the line
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and are processed at the first (preceding) machine. Then
they move to the buffer, and are processed at the second
(succeeding) machine before the units leave the system.
Each machine has a random processing time and is subject
to failure while processing. Repair is started as soon as
it fails. During the time the preceding machine is under
repair, the succeeding machine continues to process the
units supplied from the buffer storage. With a long repair
time, the buffer may become empty. Consequently, the
succeeding machine has no units to process and is forced
1o stop, or ‘starved’. Similarly, when the buffer becomes
full due to the failure of the succeeding machine, the
preceding machine may be forced to be idle, or *blocked'.

Even without machine failures, the blocking and starvation
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Figure 1. Automatic transfer line with two mochines

can occur due to the variability m processing times at the
two machines,

Such two-machine production systems have been
extensively studied. Buzacoit and Hanifin [2} presented a
turvey paper on related topics. Gershwin and Berman [3]
introduced an efficient analytical method for the system
with discrete workpieces. finite buffer, random processing
times, and random failures of each machine. Meyer et al.
{11] discussed a variant of the system in which the
succeeding machine does not break down. Buzacotr and
Kostelski [3] developed algorithms: a matrix-geometric
clgorithm and a recursive algorithm in a generalized two-
machine production model. The objective of all these
researches is the determination of an optimum buffer size.

Some researchers discussed the controi aspect of the
system. Hopp et al. [7] and Hwang and Koh [9] studied
switching policies in continuous and discrete flow lines,
respectively, Their switching methods are similar to (s,
£} inventory model.

There exists another type of switching mechanism.
Vadin and Naor [13] analvzed a queueing model in which
the service rate is variable in accordance with the queue
Izngth, This concept was applied to production scheduling
problems by Barman and Burch {1], Hwang and Cha [8],
and Mellichamp and Love [10]. In their studies, the
production levels are restricted to certain finite number of
lavels (e.g., low, normal and high) and a specific level
is determined for each production period on the basis of

the current inventory and forecasted demand. This paper

is an extension of Hwang and Koh [9] and utilize the
concept of the production switching heuristic. That is, the
preceding machine produces items at a high rate to
prevent starvation of the succeeding machine when the
inventory level in the buffer is low. On the other hand,
if the inventory level is high, the production rate of the
preceding machine becomes low to reduce the inventory
holding cost.

In this study, random machime failures and random
processing times are assumed in the both machines. It is
also assumed that each machine can be described by three
exponentially distributed random variables, i.e., processing
time, time to failure, and Tepair time. The (R, r) policy
is adopted to control the production rate of the preceding
machine. Under the policy, the preceding machine
produces items at a high rate when the buffer inventory
level 15 less than r, and at a low rate when the level is
greater than or egual to r. The machine stops its
production when the buffer inventory is greater than R
(in other words, when the preceding machine has just
produced 2 unit while the inventory level is R),

2. Model development

2.1. Model description and assumption

The system comsists of two machines which are
separated by a finite buffer as shown in Figure 1. In order
to describe the system, we define the system state with

three vartables as follows:
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n = inventory level in the buffer,
”B, if the preceding machine is blocked
a = 1, if the preceding machine is processing a unit

L0, if the preceding machine is under repair

— 8, if the succeeding machine is starved

£=1 1, if the succeeding machine is processing a unit

— 0, if the succeeding machine is under repair

With these variables, the system state is expressed by
ta, 8 n). For example, (1, §, 0) implies that the
preceding machine is processing a unit, the succeeding
machine is starving, and the storage buffer is empty. Also,
(0, 1, ») implies that the preceding machine is under
repair, the succeeding machine is processing a unit, and
inventory level in the storage buffer is #. Therefore, the
state space £ and the total number of states NV are

E=i0, §, 0% (L, S, 0,
{0,0,5), 0,1,r), (1,0,n), {1,1,n), 5= 0, 1,..,R,
(8,0, R), (B, 1, R)} {n

N=2+4R+1+2=4R+ 8§ {2}

Let P(a, 8 n) be the steady state probability that the
system s m the comesponding state in the long run
average manner. To find these steady state probabilities,
the following assumptions are made:

l} The blocked or starved machine is not vulnerable to
failure.

3} The repair facilities are always available to start repair
as soon as machine failure occurs.

3) When a machine fails, the unit being processed remains
on that machine. The machine resumes processing the
unit as soon as it is repaired.

4} The processing time of the preceding machine is an
exponential random variable whose mean is 1P . if

the mventory level is less than r and 1P, otherwise.
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(P, <P,

5) The time to failure of the preceding machine is an
exponential random variable whose mean is Lf, ., when
the machine produces items at a high rate and 14,
otherwise. {f,, <f )

6) The processing time of the succeeding machine is an
exponential random variable with mean 1/P;.

7) The time to failure of the succeeding machine is an
exponential random variable with mean 1/f.

8) The rtepair times of the preceding and succeeding
machines are exponential random variables with means
lir, and 1., respectively.

9) All the above exponential random variables are

mutually mdependent.

2.2. Markov process model

In this section, p{ e, B, n) is determined through the
discrete Markov Process Theory. First, we find g{e, 8,
n) which is the probability that the state after transition
s (a, B, n). Define steady state probability distribution

vector of gl e, 8, 1) as

4=G o G Gy > Iy 950 (3)
where

g [ 410.50), 4150} ],

g, | 70,01, ¢(0.1,0), g(1,0,, (1,10} }, n=0,1- R,
95~ 1 ¢(BOR), ¢lB1R}}.

According to Cinlar [4], there is a unique solutien to

q=9qQ and ge = 1, ()

where (Fis the N XN transition matrix of the system
and e = (1, 1, .., 1)T of size N . The first equation of
{4) can be changed into

Q=0 (5)

where Q = Q'— I, I is ¥ XN identity matrix, and 0
= {0, 0, ..., 0) of size N. Using a property of independent
exponential random variables, one can derive the matrix

Q as follows:
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pl,[_
QB: p1L+f|L+r: 0
' 0 L :
L Putfytprf
“0o00 0 —
B= < R
- prfe =

To solve eguation {3, we need to determine the inverse
matrix of Q. Several studies [6, 12, 14] proposed efficient
algerithms to find a solwtion of the equation which ¢an

oe decompose into R+ 3 systems of linear equations as

follows:
q.8,+q,0,=0 {7}
¢.8:+ 4.0+ 3,0, = 0. (8)
GG+ q.0:+¢.,0,=0 r=12..2, (9}
g0+ ., 0:+q0.,=0, (10}
4.0+ 4.0+ q., Q.= 0, {11
Gor Qo * Gu Qi+ G Q=0 meref, 142, R-1, (12)
G 0ot @ 0i+ 48,2 0, (13)
and ¢, 0, + g, 8.= 8, (14)

From the equations (7), (8} ... and (13}, we have

g=gA,, where A=-Q.57, (15)
G 9A, where A=-QiAS ()", (16)
Gy e, Where A =004 020, p=1,0:2,  (17)
9,29 A, where 4 =-Q{A_Q0+0.)", {18)
4,2q, A, where A =-QdA O Q:Y, (19)
By A 1r Where A =-0A, O O,

m=t+1,.., R-1, (20

and gp=gghp, where Ag=-B{A 040", {21}

= L

S L

For the above equations, we can easily determine A,
A, .., A, and Ay by successively inverting 2x2 or 4
x4 matrices.

According to Cinlar [4). equation (3} contains one
redundant equation. Thus we select the following one from

equation (14):

gBOR=¢(1.0R)p,; {p +f, +r:3eglB LRI (prfo).
(27

With equations (153, {16}, ... (22), and the second
equation of {4), the probability distribution vector g can

be determined through the following procedure:

procedure find_g

qiB, 1, R} « 1, qB, 0, R} « L.

Repeat
TMP « (B, 0, R)
Compute g, from (21).
Compute ¢(8. 0, R} from (22).

Unil TMP-g(8, 0, R)|{ ¢

Compute g;. gor, . 45 and g, from (21), (200, ... and
(15), respectively.

Normalize, {Divide each element of the vector by the
sum of all the elements of the vector)

end procedure

Next, ler Y( e, £, n} be the duration of time the system
remains at state (o, 8 n). Then Y{e, £ n} is an
exponeniial random variable with a mean of 1/ e, 5

n) where

#0, 8, Ok=r, I S, O)=py+fu.

M0, 0, nl=rr., 40, 1, nl=r+ paf.

M1 0 nb=pyfer, Wl 1 nl=pyfutpatf
w00 ml=rr, U0, I ml=rapaf,

w0, ml=py+firrn M1 mi=pfirpf

HB, 0, Rl=r,, 4B, I, Rl=p+f,

for n=d), 1. ... r-I and m=r, r+1, ., R. {23
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For special cases such as r=0, r=1, 1=R, or r=R=1, the
ibove procedures needs a slight modification to find ¢i o,
& n)and e B onl

Now consider a time interval{cycle time) between two
successive entrances 1o the state{ @, §, ). It can be shown

hat the expected cycle time for state( o, B, ) is

. B 1 # g(ﬂ.b.k}
Ma & n) -m‘rq( @B (it o 2o MabR)
] < dabk) (24)

“qle By per Habk)

Finally. we determine steady state probability distribu-

ion ple, 8 n) from the following equation:

plae. Aoy = e, o)/ Me, 8 n)

gl &, Bl pl &, B

T qlabk) wlabk)
(abh)EE

(25)

Once the probability of each state is obtained, some
serformance measures can be determined as follows:

1) Utilization ratio of each machine

R
e=pl1.5.00+ T 3 pll, 3 (26)
p=t f=n
R .
e=Y I pleinplB.LR) (27
r=lg=1

2) System productivity

P=p e (28)

3) Average inventory level

_ R 1 1 _ .

=% 3 Toaplo, Bale(R+1) T plB, BR) (29}
K=0 &=1 F=n f=n

3. Optimal control policy

R and r are the most important decision variables which
zharacterize the system performances. To select an optimal

sontrol policy (R, r). the following objective function is

i et e 1

100 s =

developed, which expresses a profit index of the system
per unit of time:
r-l

PROF(RA=CP-C | pl1.5.00 X X pl1, B)

el

_C.‘LEF_ ﬂiﬂp[ L &n-Cd {30)
where C = value of finished product, C,, = operating
cost of the preceding machine when its production rate
is high, C,;= operating cost of the preceding machinc
when its production rate is low. and C,= inventory holding
cosi, The first term of the equation is syslem revenue in
urit time since £ is the number of finished items in unit
time. The second term is the operaiing cost of the
preceding machine in unit time when producing in a high
rate while the third is the operating cost of the machine
in upit time when producing in a low rate. Inventory
holding cost of the system in unit time is expressed at
the last term. _

With the machine parameters (p . p, fipe 7 Pn fo
and ;) and cost parameters (C, € €. and C,), we
have to find an optimal (R, r) to maximize the equation
{30). But the equation is too complicated to find an
optimat solution with analytic method. So, we propose a
numerical search procedure to find 2 local optimal solution
as follows. Although we can not be convinced that the
solution from the procedure is a global optimum, in many

example problems the procedure found global omtimums.

procedure find_optimal
R0
Repeat
R+ R+ 1.r+~ -1, PROFR, 1} « -,
Repeat
r—r+ 1.
Compute ple, 8 n) for all (2. 8 0} € E.
Compute PROF(R. r} by equation (30).
Lnil r = R or PROF(R. ) { PROF(R, +-1)
If r = R then
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PROF,—PROF(R1), g,
else
PROFg«+—PROF(R,1-1), rpe—r-1.
Until PROFp(PROF ,.
R'R-1, rerp .

end procedure

An example problem with the fellowing machine and
cost parameters is solved:

P 100 py=T furl, £,=07, =2, p=10, fi=], r=2,

C=§ Shrit, €8 10fims, C,,=8 Stime, and C,=$ mihime

Applying the dara to the search procedure, the optimal
control policy (R¥, r*) is obtained along with other system
measures. They are

R* = 6, t¥ =2,

e, = 06131, ¢, = 0.5075,

P = 5075, = 2.599,

and PROF(R*, r*) = 18.407.

We apply the objective function and the selution
procedure to non-switching system in which all the related
parameters of the preceding machine follow the case of
high rate production, i.¢., p;=p.y. fy=fip, and C,=C
And we get the optimal buffer size R*=4 with its profit
of $17.954. It implies that rhe switching system gains
more than nen-switching system by $0.453 per unit of

time.
4. Sensitivity analysis

A sensitivity analysis is made to answer the following

questions:

1) When is it preferable to have switching system rather
than nonr-switching one?

2} Under what circumstances do the optimal values of
R and r become large {or small)?

3) How do the syslem productivity and average
inventory respond to the parameter changes?

For the analysis, we set =3, € =10, C,;=0.5C,g, and

HHMISE=

C,=1 as the standard cost parameters. For each cost
parameter, nine different Jevels are chosen by multiplying
the standard value by 1/5, 144, 113, 1/2, 1,2, 3,4 and 3.

Assuming that p,=10, p,=7, f,=1, £,=07, r=2.
p==10, f=1 and r=2 the following variables of interest
are determined for each level of the cost parameter with
the others being the same as the standard values.

I} R*,

2} r*,

3) system productivity P,

4) average inventory J, and

5) Ratio = PROF(R¥, r*) / PROF,

where PROF is optimal profit of the non-switching
system.

The results are depicted in Figure 2, 3, 4, 5, 6, and 7.
Based on the graphs, the following observations can be

made:

1} The productivity is highly related to ] and they have
the same wend. This means that we can get high
productivity {or system output) with high inventory
since it decreases the probability of starvation.

2) The average in-process inventory is closely related
to the values of R* and 1* and shows the same trend
as those of R* and r*.

3) If C (value of the product) increases, we need to
increase system productivity for high profit. This
tesults in high inventory, R* and r*. Therefore, the
switching system becomes more preferable o the
non-swiiching one as C decreases since the preced-
ing machine should produce items at high level for
high preductivity.

4) The result of changes of C,, is reverse of C's. Il C,
mereases, we need o decrease inventory level, ie.
low R* and r*

5) If C increases, (this results in high difference of
Cy and Cp since we set C;=0.5C ;) we need 10
increase the difference R* and r*, and then low

inventory and low productivity.
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5. Conclusions

In this paper, an automatic production line s studied
which consists of two wnreliable machines with random
Jrocessing times and z finite storage buffer controlled by
1 production switching mechanism. Using the Markov
arocess model, we determine steady state probability
distribution of the system states. Then, the optimal control
Jarameters are determined which maximize the system
arofit per unit of time. From a sensitivity analysis, it is
shown that the production switching system is better than
or equal to the non-switching one in terms of the system
Jrofit.

Tt is suggested that future research could extent the use
of the current model to other cases including systems of

continuous flow.
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