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Abstract

We consider the problem of determining the spare inventory level for a multiechelon
repairable-item inventory system. Our model extends the previous results to the system which
has an inventory at the central depot os well as at the several bases. We develop an algorithm
1o find spare inventory levels, which minimize the totaf expected cost and simulianeously satisfies
a specified minimum service level. Comparisens of our algerithm with the simulation show that
the olgorithm is very accurate and efficient.

1. INTRODUCTION

Repairable items are referred to as components which
are expensive, critically important, and subject to infre-
quent failures such as engines of a fighter plane or a ship.
They should be replaced or repaired immediately, if failed,
for the system o maimzain availability. For example, failed
engine of a fighter plane is immediately replaced by a
spare engine and is sent to a field repair facility or 10 a
central repair center for repair based on the severity of
the failure, For this reason the policy on the inventery or
shoriage levels is very important and naturally has been
studied for a long time by many researchers. There are
two main streams of research in this area. METRIC
model, developed by Sherbrooke [13] assumes infinite
repair capacity. In his model, there are many bases and

* Departmernt of Industrial Engincering, Hanyang University.

a central depot. A failed item at a base is dispaiched o
a repair facility and a spare, if available, is plogged in.
Otherwise, it is backordered. A repaired item fills the
backorder or is stored at a spare inventery point if there
is no backorder. Later, Feeney and Sherbrooke [4],
Muckstadt [10, 11] and Muckstadt and Thomas [12]
extended this model. However, as Albright [1] has pointed
ow, models assuming infinite repair capacity always
underestimate the amount of congestion in the system and,
consequently, result in fewer spares than are really needed
to achieve a specified backorder level.

Another stream of swudy adopts the finite repair
capacity, constant-failure-rate assumptions. The models in
this stream are more rtealistic than the comparable
METRIC models, and are certainly more difficull to solve

due to the huge multidimensional state spaces involved.
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Gross et al. [7] considered a two-echelon {two levels of
repair, one level of supply) system and presented an
mmplicit enumeration algorithm to calculate the capacities
of the base and depot repair facilities as well as the spares
level which together guarantee a specified service rate at
a minimum cost. Inevitably, the enumeration scheme of
the method requires considerable computer runping times
even for relatively small problems. Gross et al. [5, 6]
and Albright and Soni [2] analyzed the operaiing
characteristics of a given system with multidimensional
Markov process. Albright and Soni [3] applied & similar
approach to a two-echelon repairable inventory system.
Albright [1] developed an approximation algorithm with
a single type of item stocked and repaired by several
bases and a central depot. The proposed methods in this
stream concentrate on the analysis of the cument status
of a given system and, consequently, are impractical to
apply to optimization problems.

Most of the previous works concerning repairable-item
inventory systems use analytic approaches.. When it is
difficult to construct an analytic model due to the
complexity of the system, simulation car: be a goed tool.
Unfortunately, simulation is much more expensive to us¢
and is problem-specific in most cases.

More recently, Kim e al. [9] developed an algorithm
to determine the optimal inventory level under finite repair
capacities. They presented an analytic method to solve a
two-echelon (two levels of repair, one level of supply)
system with infinite calling population and finite repair
facility. In this paper we consider a more general system
{two levels of repair, two levels of supply} than the system
analyzed in Kim ef of. {9]. In other words, we consider
the system whose central depot also has its inventory as
well as the bases, We develop an efficient method to find
the amount of spare items at each inventory which
rinimize the total expected holding plus shoriage costs
end simultaneously achieve a specified minimum service
rate for large real problems.

This article is organized as follows. In Section 2 the

model we consider is described and, in Section 3, we
mntroduce the algorithm for the model and present an
example 1o explain the algorithm. Section 4 evaluates the
accuracy and the computational efficiency of the algorithm
using simulation. Lastly, in Section 3, we summarize the
results of the study and identify some areas for future

researcht.

2. MODEL DESCRIPTION

We consider a system with f(/{w0}bases and a central
depot as depicted in Figure 1. The depot has its own
spares inventory which enables the depot-repairable item
to be replaced immediately with a spare, if available. Time
intervals berween failures at base ¢/ are expomentially
distributed with mean 1/ 4, i=1,2,-J. A failed item at
base { is base-repairable with probability e, and the base-
repairable item is replaced by a base spare if cne is
available. Otherwise, replacement is delayed until a spare
becomes available. A failed item, which is depot-
repairable with probability 1- e, is sent 1 the depot for
repair. If the depot has spares available, then a spare is
immediately sent to the base where the failed item has
originated and the failed item, after repair, is stored at
the depot inventory. On the other hand, if the depot spares
are not available, then the failed item is repaired and is
sent to its base after repair. We refer to this case as
depot-shortage with respect to a base.

The 1otal number of failed items of base i, in the sense
that they are currenily unavailable for replacement, are
the sum of the items at the base repair center, items in
depot-shortage with respect to the base i, and items in
transit between the depot and base 7.

To obtain the steady-state probability distribution of the
failed items at éach base. Let us denote

P, (n) = probability distribution that there are » items

at the 1epair center of base i,

P,(D) = probability distribution that there are D items

at the depot repair center,



An Algorithm 1o Determine the Spare Inventory Level

389

for Repairable-Item Inventory System with Depot Spares

Repatred
Spare Base Repair
Inventery Center ]
Item with Base Ttem with Base Ttem with Base
Repuirable Repairable Repairable
Failure Failure Failure
Base | - Base - Base
Ttem with Depot Item with Depot
Repairable Failure Repairable Fuilure

Depot Repair Center

Figure 1. Schematic Representofion

P (k) = probability distribution that there are &; items
at the depot repair center which are depot-
shortage with respect to base f,
Plm) = probability distribution that there are m; items
in transit from or to base ¢,
= probability distribution that the total number
of failed items of base i is z

Piz)}

2.1 Probability distribution of items at the base
repair center
Let there be ¢, service channels at the repair center of
base { and the repair times at each channel are assumed
1o be Lid. exponential with mean 1/ ;. Since we assume
infinite population, the base repair center can be modeled
as an M/M/c, quencing model, where the amival (base-
repairable failure) raic is o;A; and the service raie is

#;. So the sieady-state probability distribution that there.

of the Repoirable-item Inventory Systern

are n ilems at the base repair center 7, P{n}, is given
by the following (1} and (2).

e a)

H‘#; ——P{0) (1<n<c)

Pin) = (1)
o 4f (n=c)

zc
s iP(O) nz;
where

Ca A 1 (k) e I

PO - ’7’!—“ il E' # ] Xci”f‘“;'{x] @

Note that the above probability distributions do not exist
unless the steady-state condition, ie., e;A /¢ a1, is

satisfied.
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2.2 Probability distribution of depot-shertaged items
at the depot repair center

The depot-repairable failures at base i occur accerding
1o Poisson process with rawe (1- e} A, which are indepen-
dent of each other. This implies the superposed arrival
sream at the depot repair center is Poisson with rate
Z{1-a)A;. As we assume that there are c,channels at
the depot repair center, and also, the repair times are i.
1.d, exponential with mean 1/ #,, the probability that there
wre D items at the depot repair center, P (D), is derived
from the equations of an M/Mfc, queueing model as

follows:

[20-) li]D
——=—Pf0} (D<c)

Dy
f)d(D) = ; (3)
[Z(l-ai}AE]DPd(O} Do)
T h T [
‘-‘3{“’%"‘? ’
where

. 00 - CEJ [£0-a)2,]P L! Z(l-ai)li]m
' h D=n Dfp? Cd"! g
Gty T

X CarO-a)n, @

Steady-state condition is é(l— 2 Adeg el L

Now let us find the probability distribution of &, the
number of items at the depot repair center which is
supposed to be returned to base f, ie., depol-shortaged
Jtems of base ¢, When we denote actval fill rate of depot
as F, the amival rate of total depot-shortaged items is
I(1-a) A{I-F )} and the rate of depot-shoriaged items
of base ¢ s (I- a) A{1-F,). Since actual fill rate means
“he percentage of amiving items that are replaced
‘mmediaicly by a depot spare, the ratio of total depot-
shortaged items to those of base i, ¢, is expressed as
n equation {5).

; !
§;=0- QA AF I ) (I T-0) k- (S)

Now, considering there are 5, spare items at the depot,
the conditional probability that there are & depot-
shortaged items with respect to base i given that D items
are depot shortaged is given by

1 if k=0,Dss,

Pl k| DY = ¢

(D;SJJ F-g)" W s,

it k+0,Dss, (6)

Equation (6) means that, if there still remain spares in
the depot, then depot-shortaged item 1o base i can not
exist. On the other hand, if D)s,, ie., all spares in the
depot have been sent o bases, then depot-shortage
accumulates and, among them, depot-shortaged item to
base i has binomial distribution.

By unconditioning on D in Pl-d(ki/D). we can obtain
P k) as follows:

P k) = iZ)Pf. A&iD) " P fD) {7

2.3 Probability distribution of items in transit

Ir is well known that the probability distribution of the
number of items in transit from the depot repair center
1o hase i is equal to that of the depot repairable failures
ar the base in the sieady state{see, for example, p. 710
of Hillier and Lieberman [8]). Therefore, the probability
distribution of the number of items in transit from the
depot to the base is Possion. Since the number in transit
from bhase i to the depot vepair center is alse Poisson
and sum of independent Possion’s is Possion, the total
number of items in transit is also Possion. When we
denote the transit time between base 7 and the depot by
t;, the probability distribution of the number of items in
transit is Poisson as given in equation {8}

[201- e Az, ] ™ X expl-2A1- ) Ag)

Plm)} =

Am, my {8
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2.4 Probability distribution of total failed iiems

In the steady state, the total failed items of a base are
the sum of the jtems currently at the base repair center,
at the depot repair center and in transit. So we can obtain
the probability distribution of the total failed items of base
i, Plz), by convolution of the previously derived

probability distributions as in equation (9).

PG = T SPm) PK) Plerkem) ®
m=k=0

2.5 Expected cost and minimum fill rate

If the total failed nems of base i, z;, is greater than
the spare inventory level s, then the shortage cost b, is
incurred for each backorder. On the other hand, the
holding cost k; is charged on the total number of spares
in the system, which is equal to k3, since it is reasonable
1o consider that the holding cost is charged on the whole
spare items regardless of their current locations. When we
assume a gquadratic shortage cost, the total expected cost
of base i, which is the sum of the expected shortage and
holding costs, can be obtained by:

w .
TCls) = hspb, T (5 Pz) (10)
FETRS
Similarly, when we denote the depot shortage and
holding costs as b; and #,, respectively, the total
expected cost of the depot is

3]
TCsp) = hspb; T (D-sFPD) (11)
De=gyh

Now in order to find the minimum cost spare level at
the base i, we need the following two theorems, which
has been proved in Kim et al. [9]

Theorem 1. The expected total cost functions, TC(s)}
and TC(s d) dre wmimodal on the imerval f0,m].

Proof. See Kim et ol [9].

The actual fill rate £, which is the probabiliiy that the

base has more spares than the total failed items, has to
be larger than or equal to the minimum required fill rate
£

Fy- Pr[s0s, |- 5 Pleyf (12)

Theorem 2, Ler s: be the inventory level with the
minimum total expected cost and ;, be the minimum of
s; values satisfying equation (12). Then the spare
inventory level to achieve the minimum fill rate at
TIHMUM cost is max [ S:;:] .

Proof. See Kim et of. [9].

3. THE ALGORITHM

We now formally present an algorithm to determine the
spare inventory level 1o achieve a predetermined minimum

fill rate at a minimum cost

Step 0. Verify that the following steady-state conditions
are satisfied.

i
TO-e) e Y and o dfe udl for i=12, 0.
i=1

If the conditions are met, go to Step 1. Otherwise, stop
since the system we are considering can not reach steady-
state.

Step 1. Calculate P (D) for D=0,1,+ until the probabil-
ity becomes less than =10
Step 2. Calculate minirmum cost spare level of the depot
by calculating 7C(s) until it starts increasing. The largest
spare level before we observe increase of TCls,) is the
minimum cost spare level.
Step 3. For =12, 3], perform the following 3.1-3.4
Steps.
Step 3.1. Calculate PLn}, Pk}, Plm) and Pz}
untit the probability becomes less than ¢=10"".
Step 32. Calculate TC(s) until it starts increasing.
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The largest value before the increase is the minimum
point of the cost function, ie., sf.
Step 3.3, Caleulate the minimum invemtory level
satisfying the minimum fill rate S_,
Step 3.4. Choose the maximum of sf and s_; as

desired spare inventory level for the current base :.

Step 1 and 3.1 are to calculate the probability
distributions previously introduced. In Step 3.2 and 3.3,
we find the minimum point of the cost fuaction and
calculate the minimum inventory level satisfying the
specified minimum fill rate. Using the results of Steps
3.2 and 3.3, we are able to find the desired spare level
in Step 3.4.

3.1 Example

We illustrate the algorithm by the following example.
Consider a multicchelon inventory system with two bases
and a depot. The shortage costs for each base and a depot
are 107.5, and the holding costs are set to 19.6. Other
relevant data is described in Table 1. Table 2 shows the
results considering the total cost only. For base 1, when
we neglect the minimurm fill rate, the desirable inventory
level is 26 at a minimum total expected cost of 539.468.

Table 1. Data for the example

Table 2, Minimum cost inventory level

Base/De- Parameters
pt i a e g |ait | h|b
Base 1 | 20.0 10.623| 2 |18.0|1.130| 196 |107.5:
Base 2 | 10.0 |0.7431 1 |15.0|1.502| 196 |107.5
Depot - - 5 30| - [ 1986|1075

' Base/Depot Inventory level Minimum cast
Base 1 26 539.458
Base 2 14 308.617
Depot ' 10 249.697

Table 3. Output of the algorithm for the example

Minimum Actual

fil rate | fil rate OmlT;efpam Optimal cost
098 |0994(0993)] 30(18) bo1.428(355.569)
095 |0956(0958) | 26(15)  530.468(312.476)
090 |0956(0929) | 26(14)  530.468(308.617)
085 |0956(0929) | 26(14) 539.468(308.617)
080 |0956(0929) | 26(14)  530.468(308.617)
0.75 |0.956(0.929) |  26(14)  539.468(308.617)
070 |0956(0.929) | 26(14) b39.468(308.617)
065 |0956(0920) | 26(14) F39.468(308.617)
06 |0056(0929) | 26(14)  530.468(308.617)]

* Entry in parenthesis is for the base 2.

For base 2, it is 14 items at a cost of 308.617. For the
depot. it is 10 items at a cost of 249.697. The solution
of the example, inventory levels satisfying the minimum
fill rate at minimum cost, is summarized in the third
columm of Table 3. The spares level and the cost are
decreased as the mmimum fill rate is decreased until the
minimum point is reached. But if the inventory level
arrives at the minimum point, it remains there despite a

further decrease in the mimimum fill rate.
4. COMPUTATIONAL EXPERIMENTS

We perform extensive computational experiments for
the proposed algorithm. The principal objective of
computational experiments is to fest the accuracy of the
proposed algorithm. For this purpose we compare the
minimum total expected cost and actual fill rate calculated
by the algorithm with those obtained from a simulation.
A secondary objective is to get an idea of how fast the
algorithm is for real problems. The proposed algorithm is
written in € and the simulation model is programmed in
the SLAMSYSTEM (Version 4.0} with an interface
program in FORTRAN. The experiments are performed
on 4 Pentium(166MHz CPU) based IBM compatible PC
system. The data for each experiment are generated from
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the following distributions: " Tabte 5. Experimental result for base 5
. | : o
Distributions for Constant Parameters ; Base Cost Fill rate
Holding cost ~ N(25, 25}, /Depot | Algorithm | Simulation | Algorithm | Simulation |
Shortage cost ~ N(100, 100), Bagse 1 | 509.797 | 511.445 0.802 0.803
Probability that a failure is 2 base repairable ~ U(0.4, Base 2| 308050 | 305904 | 0855 | 0.853
08) Base 3 | 440966 | 442.208 0.79¢ 0.788
. Base 4 | 402960 | 402.883 0.843 0.841
Number of repair channels at the depot ~ integer nearest Base 51 397171 | 397.198 0.954 0.954
1 a random number from U3, 6), Depot | 139.370 | 140.071 | 0739 | 0740
Number of repair channels at base ~ integer nearest
a random number from U(2, 5}, Table 4. Input data for base 10
Minimum fill raie ~ U{0.55, 0.99),
Transit time ~ U(10, 2.0) ' Base Parameters
epoti o | o [ o | &) K | & | B | B
Distributions for Failure and Repair Rate Base 1|12.0(0539) 2 | 4.0 [0.655|1.802{29.96(101.6
Failure rate ~ Poisson{10}, Base 2| 9.0(0681] 4 | 2.0 |0.643|1.559|29.96/t01.6
Repair rate of a channel at the depot ~ Poisson{20), Base 3|10.010483| 2 | 6.0 \0.805/1.918/29.96/101.6
Repai f 2 channel at b Poi %) Base 4| 9.0(0.423| 1 9.0 |0.721{1.703(20.86[101.8
epalr refe of @ channet at base = Foisson Base 5|12.0 [0.610| 3 | 5.0 |0.928[1.822[20.96'101.6
Base 6| 7.0 [0.647| 1 | 7.0 |0.751(1.748/29.96/101.6
For a given number of bases, we penerate a set of data Bage 7|12.0 (0.704| 3 | 5.0 ;0.972|1.058129.96/101.6
satisfying the steady-state conditions from the distributions Base 8) 9.0/0648 2 | 9.0 0.627)1.289.29.96)101.6:
fo ant rers. For each set of data, we use th Base 9| 80(0.723] 2 | 7.0 |0.830(1.382|29.96|101.€
" CONSIANL pAIAMELCS. For each set of cat, ¢ Base 10| 11.0 [0.522| 2 | 7.0 [0.5571.590(29.96(101.6
algorithm to calculate the total cost and fill rates of a —
. Depot | - - 5 180 - - |29.96/101.86

system based on the failure and repair rates. With the
same constanl parameters data sef, ten independent
simulation runs are replicated using random numbers

Table 7. Experimental result for base 10
generated from the failure and repair rate distributions to

obtain an averaged result. Each simulation is run for Base Cost Fill rate
Depot | Algorithm | Simulation | Algerithm | Simulation
Toble 4. input dato for bose 3 Base 1| 723.405 | 72475¢ | 0663 | 0865
Base 2 | 595515 | 595.382 0.678 0.679
Base Parameters ? Base 3| 820.040 | 820357 | 0.827 0.828
wepot [ [ o [ ¢ || 6]t n]0b Base 4! 724308 | 720738 | 0742 | 0744
Base 5| 813.018 819,243 0.945 0.944
Base 1 (10.00623 4 2.010.774/1.630|19.61:107.5 Base § | 448.283 459 453 0.758 0.750
Base 2 | 5.010.743| 1 | 50 [0.941/1.502|19.61107.5 i Base 7| 542431 | 542806 | 0979 0.978
Base 3 |18.0 [0.651| 4 | 5.0|0.721,1.050(|19.61(107.5: Base 8 | 383.355 | 384.441 0.694 0.692
Base 4 | 800332 2 8.0 [0.802[1.324:19.61 107.5 Base 9| 345301 345320 0.876 0.876
Base 5 '11.0(|0.648| 2 :10.0|0.945[1.520,19.61107.5 Base 10 696.363 696.618 0.647 - 0.646
Depot | - | - | 2 1501 - | - |1961'1075 Depot | 613243 | 613605 | 0.683 0679 |
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Table &. Input date for base 15 Toble 10. Analysis for algorithm vs. simulation

Base Parameters | No. of Mean |Maximum of Minimum of{Variance of-

epot| A fa | e | u | £ | & | h |8 bases percent | percent | percent | percent :
difference| difference | difference | difference

Base 1|16.010.173| 3 6.0 (0.831|1.464 29.36|108.4 T Cost | 0.3060 0.6965 0.0068 0.0006
Base 2| 12.0 10872 3 6.0 |0.767(1.314 29.35|108.4 . _ ’ ’ ’ ’

Base 3;11.0 10757| 9 2.0 |0.991|1.628 29‘35 10{3.4 EF!” rate | 0.3067 0.8683 0.0062 0.0008 .
Base 41 7.0(0770| 2 | 7.0|0.771|1.075 29:36 108.'4 10i Cost | 0.155% 0.9348 0.0055 0.0007 ,
Base 5/ 15010622 2 12008071115\, ol o s Fil ate | 0.2596 | 09830 | 0.0023 | 0.0008 |
Base 6, 14.010591) 2| 10.0:0972/1.6781, 4e}. 0g.4 Cost | 0.1155 | 03780 | 0.0004 | 0.0001
pase 7| 6.010.467) 2 | 300755113859 36 108.4 " i | 02867 | 08404 | 00060 | 00007
Base 8| 5.0 (0744 1 |12.0:0.585|1.576 29.36]108.4 ’ ’ - ’

Base 9| 8.0 (0685 4 | 3.0[0.858|1.311 29.36]108.4
Base 101600590 3 | 5008761047 | ol Cost
Base 11/ 11.0 (0571 2 7.0 (0.885|1.766 20.36| 108.4 4
Base 12 11.0|0525) 2 | 90107971203/ 0| = 08 N v
Base 13 13.0 |0.703| 4 | 3.0 [0.899(1.908 0 > ¢ Ll ~ _

129.36(108.4 § 0.5 \ —a— hlmxinmon
Base 14 18.0 |0.788| 3 6.0 0.705(1.105 26.35/108.4 & 0.4 - =~ Madnman
Bese 18 50|0607) 2 | 30 05621784 Aoz p——m— —x— Variauce
; Depot | - 5 [21.0] - - 2936|1084 0 * ' "
! 5 14 15
Nmnber of Base

Table 9. imental It for base 15
able 9. Bxperimental result for base Figure 2. Cost Difference between the Proposed

Algorithm ond Simulation

Base Cost Fill rate :

{Depot | Aigorithm | Simulation | Algorithm | Simulation :

Base 1| 653103 | 652464 | 0.851 0.852 FiR e

Base 2 | 483185 | 483201 | 0.782 0784 | 2 -

Base 3 | 676.233 | 676.236 | 0992 0.992 R = Mean
Base 4 | 202465 | 221.957 | 0.842 0.845 i i —— (T e
Base 5 | 556236 | 556.667 | 0852 | 0851 | £ o5 e S
Base 6 | 885.364 | 885214 | 0973 0973 . 44:___-:..5 o

Base 7 | 419147 | 418411 | 0.792 0793 | : 5 10 15

Base 8 | 212.816 212,01 0.703 0.796 Nuber of Base

Base & | 430.904 | 430.805 0.878 0.878

Figure 3. Fill Rate Difference between the Proposed
Base 10| 796175 | 798.207 0.983 (.983

Base 11| 724017 | 724631 | 0003 | 0902 | Algorithm and Simulafion

Base 12| 536.029 | 536.501 0.810 0.811 _

Base 13| 827.760 | 825.781 0.002 0904 | for the cases where there are 5, 10 and 13 bases. Table
Base 14| 580.409 | 578.346 0.734 0735 10 summarizes the results of the experiments using the
Base 15| 289.054 | 289.083 | 0685 0684 percent differences of the total cost and fill rate as
Depot | 160151 | 1680.805 | 0676 0.663 performance measures. Here, the percent difference means

{100 xioutpwt of the proposed algorithn - output of
50,000 time units and the initial transient period was simulationlfoutput of simulation). Figure 2 and Figure 3
Jiscarded when accumulating the statistics. The following graphically show the contents of Tabie 10.

Tables, 4-9, show the input data and cxperimental resulis



We conclude from our set of runs:

1. The proposed algorithm finds the optimal spares
level estimated from the simulation for all cases.

2. Percent differences in the cost and fill rates are
within 2% for all replications.

3. Mean and variance of percent differences do not
change significantly as the problem size increases.

4. All results of the proposed algorithm are very close
to those obtained from the simulations.

5. Running time of the algorithm is less than 10 seconds
in CPU time for all cases,

Even though our experiments are based on rather a
small test set of problems due to the long simulation
running time {for example, more than 3 hours in CPU
time for the 15-base problem), we see the proposed
algorithm appears to be quite promising.

5. CONCLUDING REMARKS

In this paper we develop a method to calculate an
approximate spare inventory level which satisfies a
predetermined minimum service rate at minimum CosL
With this approach we are able 1o solve large problems
quickly and accurately. For further study, one can relax
the assumption of infinite number of items operating at
each base, which has enabled us to make use of the
formulas from M/M/s model. In addition, this model can
be extended to the more general case where the spares
in a base can be tansferred to another if it has no spare
to replace a failed item. We are currently exploring these

problems, and the results to date are very encouraging.

REFERENCES

[1] Albright, 8. C., “An Approximation to the Stationary
Distribution of a Multiechelon Repairable-Item Inven-
tory System with Finite Sources and Repair Channels”,
Naval Research Logistics Quarterly, Vol.36, pp.

An Algorithm to Determine the Spare Inventory Level for Repairable-Item Inventory System with Depot Spares 395

179-195, 1989,

[2] Albright, S. C. and Soni, A., “An Approximation to
the Stationary Distribution of a Multidimensional
Markov Process”, HE Transactions, Vol20, pp.
111-118, 1989.

(3] Albright, 8. C. and Soni, A., “Markovian Multiechelon
Repairable Inventory System”, Naval Research Logis-
tics Quarterly, Vol.35, pp49-61, 1988,

[4]) Feeney, G. . and Sherbrooke, C. C., “The {s-1. s
Inventery Policy under Compound Poisson Demand”,
Maragement Science, Vol.12, pp.391-411, 1966.

(5] Gross, D, Kioussis, L. C. and Miller, D. R., "A
Network Decompositicn Approach for Approximating
the Steady-State Behavior of Markovian Multi-
Echelon Repairable Tiem Inventory Systems”, Manage-
ment Science, Vol.33, pp.1453-1468, 1987,

[6] Gross, D. and Miller, D. R., “Multiechelon Repairable-
I[tem Provisioning in a Time-Varying Environment
Using the Randomization Technique”, Naval Research
Logistics Quarterly, Vol.31, pp. 347-361, 1984,

(7] Gross, D., Miller, D. R. and Soland, R. M., “A Closed
Queueing Nerwork Model for Multi-Echelon Repair-
able Ttem Provisioning”, /IE Transactions, Vol.15, pp.
344-352, 1983,

(8] Hillier, F. S. and Lieberman, G. 1., Imtroduction to
Operations Research, 6th Eds, McGraw-Hill, New
York, 1995.

6} Kim, J. S., Shin, K. C. and Yuv, H K., “Optimal
Algorithm to Determine the Spare Inventory Level for
a Repairable-Item Inventory”, Computers and Opere-
tions Research, Vol.23, pp.289-297, 1996,

110y Muockstadt, . A., “Some Approximation in Mult-

Trem, Multi-Echelon Inventory System for Recover-
able Items”, Naval Research Logistics Quarterly,
Vol.23, pp.377-394, 1978

[11] Muckstadt, J. A., “A Model for a Multi-Item, Multi-

Echelon, Multi-Indenture Inventory Sysiem”, Man-
agement Science, Vol.20, pp.472-481, 1973
[12] Muckstadt, J. A, and Thomas, L. T, “Are Muli-



396 Jong Soo Kim - Sun Hur - Kyn Chul Shin

Echelon Inventory Methods Worth Implementing in
Systems with Low-Demand-Rate Items?”, Manage-
ment Science, Vol.26, pp.483-494, 1080,

[13] Sherbrooke, C. C., "METRIC: A Muli-Echelon
Technique for Recoverable Item Control”, Opera-

tions Research, Vol.16, pp.122-141, 1968.

984 43 3

— A
3= H

%1 83 HE +H



