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Abstract

In this paper, we deal with @ node weighted Stefner Ring Problem {SRP} arising from the deployment
of Synchronous Optical Networks {SONET], a stondard of fronsmission using optical fiber technology.
The problem is fo find a minimum weight cycle (ring] covering a subset of nodes in the network
considering node and fink weights. We have developed two mathematical models, one of which is
stronger than the other in terms of LP bounds, whereas the number of constraints of the weaker one
is polynomially bounded. In order to solve the problem optimally, we have developed some
preprocessing rules ond valid inequalities. We hove also prescribed an effedtive heuristic procedure
for providing fight upper bounds. Computational results show that the stronger model is better in terms
of computation time, and valid inequalifies and preprocessing rules are effective for solving the problem

1. Introduction

in this paper, we consider a (node weighted) Steiner
Ring Problem (SRP) arising from the deployment of
Synchronous Optical Networks (SONET). The SONET is
a standard of transmission technology over optical fiber
networks. For example, a typical capacity of SONET
technology permits the transmission of 2.4Gbps on a
single fiber, which is equivalent to over 38,000 voice
circuits (see the technical details in W, 1992). Thus, any

failure even in a single link may result in a tremendous
loss of customer service. Accordingly, telecommunications
companies are adopting SONET ring architecture in order
to enhance the survivability of networks. In this context.
an imponant issue for telecommunications companies is
to design cost-effective SONET ring that guarantees
network survivability in the event of link failure. In order
to provide the link survivability, we need to connect all
the nodes in a single ring by using SONET add-drop
multiplexer (ADM), which is capable of adding and
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dropping the traffic, at each node. However, due to the
capacity limit of SONET equipment such as SONET
ADM and optical fiber, we need to partition the network
into several sub-networks {clusters), and connect all nodes
in each cluster. The problem of our concern is
physically connect all nodes in a cluster in order to form
o ring with minimum cost. The logical clustering problem
itself is also a difficult combinatorial optimization problem
{see Lee et al., 1998).

Now, we describe our problem as follows. When we
have a set of ADM sites, a set of non-ADM sites, and
a set of existing links in the network, we would like o
constiuct a minimum cost SONET ring covering all ADM
sites. However, if it is not feasible to build a physical
ting only with ADM sites and their direct links, we need
io use non-ADM sites for connectivity although adding
non-ADM sites incurs additional fiber and repeater cost.
“his problem can be formally expressed as follows. For
u given undirected graph G = (V, E), a node set ¥ C

V corresponding to the ADM sites, a set of link weights'

€ =0 for (i, ) EE, and a set of node weights w, =0
for kS N =(V-N), find a minimum weighted ring that
covers all the nodes of set V. The nodes in N are called
Steiner nodes, and the resulting ring is called 2 Steiner
ring of G. Accordingly, we call this problem as a Steiner
Ring Problem (SRP). Note that SRP reduces tw the

Traveling Salesman Problem (TSP) by letting n= &.

Padberg and Rinaldi (1991) has solved symmetric TSP
optimally up to 2392 cities by means of problem reduction
technique and branch-and-cui procedure. On the other
hand, Gendrean, Laporte and Semet (1997) has presented
polyhedral approach 1o the Covering Tour Problem (CTP)
on G=(VUWE) that determines the minimum length
Hamiltonian cycle on a subset of V such that every node
in W is within a prespecified distance from the cycle.
Here, note that CTP has additional constraints compared
to SRP such as every node in W being within prespecified

distance from the cycle. However, the fact that node set

V in CTP corresponds to the set of Steiner nodes in SRP
impiies that CTP does not reduce to SRP, nor does the
reverse apply. Balas (1989) has investigated the polyhedral
structure of the Prize Collecting Traveling Salesman
Problem (PTSP), where a salesman wishes to minimize
his travel ¢ost and net penalties while visiting enough
cities o collect a prescribed amount of prize money. Note
thal PTSP has constrainls of total prize collected from
the tour being greater than or equal to a prescribed amount
of money. However, the set of nodes in PTSP corresponds
to the set of Steiner nodes in SRP. Although there is an
extensive body of literature for the TSP, this paper is the
first effort to solve the SRP.

This paper is organized as follows. In the next section,
we present two aliernate formulations for the problem and
compare the strength of these formulations in terms of
the lower bound obtained by solving the LP relaxation
of the formuiation. In Section 3, we descobe several
classes of valid inequalities, which hopefully tighten the
initial formulation, In Section 4, we develop heuristic and
exact procedures. We also present computational resulls
of the solution procedures in Section 5. Section &

concludes this paper.
2. Problem Formulations

In this section, we develop two aliemate formulations
for solving the problem, Toward this end, let us define
some nofations. Let Xg= Iif node i < V is connected to
node j(» i) E V and 0 otherwise, and let i, = 1 if node
KSN=V-N) is in the ring and O otherwisc. We
assume that iangle inequalities are satisfied for the set
of link weights. That is, i+ Cy = iy for all {i, /), (L. k),

{j. k) € E. Then, the problem SRP can be formulated as

follows.

SRP: Minimiz I I Gyt I owu
ISV JEVI kEN
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Subject to I Xip=2 i€EN, (1)
JEV
I x,.=2u RKEN, (2
ey TR )
Ky Sty EVIAKEN, 3
IS ox; 22 @
iesjes )

SCV,SNN+ &, SNN+ &,
x5 € 10,1 i, LiEV
¥ 10,1} kEN,

where i, = x5 if i{j and X

otherwise.

Constraints (1) indicate that two links incident to node
i & N should be on the ring, and constraints (2) indicate
that two links incident to node k< N should be on the
ring if nede kSN is on the ring. Also, in order to
increase the lower bound of LP relaxation, we consider

constraints (3). Constraints {(4) prevent subtour.

Remark 1. Observe that for a given (binary) feasible
solution of x, the & variables are automatically binary at
optimality, even if treated as continuous. Alse, note that
SRP is NP-hard since it rednces to TSP by leuing ¥ = £.
Moreover, since the number of constraints (4) goes up (o
2|N|-2, generating all constramis of type (4) is impracti-
cal, though not impossible. Motivated by this, we develop

another formulation in the feollowing.

Now, we develop an alternative formulation, denoted
by SRPF, based on the flow concept. We conceive of a
flow that enters a single node from an artificial node of
supply |N|+ I_u, denoted by node 0, and we seek
to send the ﬂok\:vg?lo other appropriate nodes to satisfy the
connectivity conditions. Toward this end, define fiJf to be

a directed flow from node i to node j, i+ j With these
flow variables, we obtain the following formulation SRPF
for the problem SRP.

A e _
SRPF: Minimiz I 3 'CU‘XE-Fkéﬁhkuk

IEVjEVIi

Subject to I x=2 iEN, (5
JEV
Poxa.=2u kEN. {6)
ey 23] k.
Xigp Sy (EV.KEN (N
I fo= N+ T u, (8)
fevfo' en ¢

fas“_j.ev(fff‘ﬁﬂ"’ iexN 6
¥y

Jort L Uity = o €8 (0

fs |V|_r[m. evuiL ey, dn

S ox,=1, (12)
ey

£;20, i#ji€VU{OL/EY,
A €101 i, LjEV.
W, S 10,1}, kEN.

Consiraints (8) determine the amount of flows from an
artificial node to all nodes in V. Constraints (%) and (10)
ensure the connectivity of the ring. Constraints (11)
indicate that node i should be connected to node j, if
positive flow is sent from mnode { t nede j, {5
Constraints (12) force the flow from an artificial node to
enter a single node in V. Note that, contrary to the
formulation SRP, the number of constraints in the

formulation SRPF is polynomially bounded.

Next, we compare the sirength of the two formulations,
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Let P denote the LP relaxation of formulation P, and let
v(P} denote the optimal objective function value of a
given formulation P. Then, the following result shows that
the formulation SRPF is weaker than the formulation SRP
in terms of LP bound.

Proposition 1. v(SRP) = wWSRPF).

Proof. Let (r,u) be a feasible solution to SRP. Then,
we see that there exists a feasible solution (z, i, /) to SRPF
of the form f = 1 for i € Nofy =y fx i EN, xp= 1/]V]
for i =V, and J}sz 0 for i, j(#0) € V. This completes the

proof.

Now, we need to see if WSRP) < WSRPF), which
implies that v(SRP)= V(SRPF) due to Proposition 1.
However, we can easily disprove v(SRP) < VISRPF) in

the following example by showing that there exists a
problem instance such that v(SRP) > V(SRPF).

Example 1. Consider a graph with ¥ = {1,2,4,35)
N = (3,6}, E = {(1,2), (1,3), (L6). (2.3} (3.4), (45},
(46}, 561, and co = co= 3, cn=cu=4 cpn= cxs =
Joce = en= M, wi = wy = 2, where M is sufficiently
large number. This example is ilfustrated in Figure 1.
Then, we may have (x,i7) of SRPF as follows withv
(SRPFY = 28, %0 = X = 0.5, xn = X0 = xu = X = xw
= .-\:sn= 1, -.l;.\= Ea= I,J}u:=}os= 3,}11=}se= 2,}1!=
Ju =1, and O for all other variables. Solutions x, x but 7

Figue 1. An example of v(SRP)) V(SRPF).

are shown on links of Figure | of the form (x, ). Here,

we se¢ that there are two subtours ({1, 2), (1, 3), (2, 3)}

.and {(4, 5), (4, 6), (5, 6)} in (x,u,f) of SRPF, which

violates the constraint (4) of SRP. Moreover, we have
that v(SRP) = M + 24. This example shows that v(SRP}
> V(SRPF) when M » 4. This implies that formulation
SRPF can be arbitrarily bad in terms of LP bound.

3. Valid Inequalities

In this section, we develop some valid mequalities that
tighten the formulaticn SRP. Motivated by the strength of
lifted cycle inequality for asymmetric TSP (see Lawler.
1985), we strengthen the cycle inequality in consideration
of node set N.

Proposition 2. Suppose that there exists a (riangle
(cycle) in the subgraph induced by § = {i,j, k) C V along
with its incident links. If j k€ N, then the optimal
solution of SRP satisfies the following mequality for
l1EV-§

X+ Xy T Xy <2 (3

Proof. If x;,=0 in an optimal solution, (13) is valid
since {(i, /), (i, k), {j, k)} is a subtour. And, if Tin= L
(13) is also valid since j k€ N and the wiangle
inequalities arc satisfied for all i,j and k< §. This
completes the proof.

Also, we strengthen the subtour elimination constraint

introduced by Dantzig, Fulkerson and Johnson (1954).

Proposition 3. Define L($) as the set of links induced
by node set S. Let SCV be such that § N N ¥ &. Then,
the following inequality is valid for SRP.

I xS 1S)-2+4, KESON. (14)
(INELS)
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Proof. 1f u,=1, (14) becomes subtour elimination

contralré, And fu =0 wese I = I o

upELs "V igeusy "

Then, (14) aiso becomes sublour elimination constraint.
This completes the proof.

Example 2. Consider an example of § = {I, 2, 3, 4}
and 5§ N &= {4). which is illustrated in Figure 2. Here
we see that the left hand side of (14) s x+xi + xu +x=
+xutrn = 05+0.5+05+ 140254025 = 3, and the
right hand side of (14) 15 |§]-2+uw=4-2+0.5 = 2.5,
which violates the inequality of type (14).

Figure 2. An example of valid inequality of type (14).

4. Solution Procedures

First, we develop a heunistic procedure for SRP, If there
exists an Hamiltonian tour in the subgraph ¢ induced by
node set ¥ €V along with its incident links, then we
can apply the spanning-tree perfect-maiching heuristic
(see Christofides, 1976) to obtain an initial tour. However,
we may not know in advance if there exists an
Hamiltonian tour in G'. Hence, we begin cur heuristic
with G = (V, E) to find an initial tour. Then, we improve
the initial tour. Now, we define some notations to descnibe
the heuristic procedure. Let & (i, §) be the set of links
incident to node / in the subgraph § © G. Also, let N(S)
be the set of nodes in § & G, and let E($) be the set of
links in § © G. Then, the heurstic procedure c¢an be

described as follows.

Initial Tour Finding Heuristic

Step 1: Construct a spanning tree T of G = (V. ).

Step 2: Define L = {i ENTD -GN = }LIFL= &
then stop.

Step 3: Remove node set L M ¥ from 7, and update
L

Step 4: Find the shortest path P between any pair of
nodes 5, ! € Lsuch that EPY N ETy = & I
path does not exist for any pair of 5.1 = L,
then go to Step 7.

Step 5: Add P w T, and let € be the cycle containing
nedes s and . If T is a tour, then stop.

Step 6 Define U= i ENO): [6(i, P 32}, Re-
move Ik (5,9 = argmax; e py e v jencp O
from 7, and go to Step 2.

Step 7: Find the shortest path P between nodes s € £,
and t & N{T)-L, and then go to Step 5.

Remark 2. In order to find the shortest path
considering node weights as well as link weights, we
modify the Dikstra algorithm (see Nembauser and
Wolsey, 1988), which runs in Step 4 and 7 of the initial
heuristic procedure. The idea is to transform a node to a
link. That 1s, split a node into two artificial nodes, and
then introduce an aoxiliary link connecting the (wo
artificial nodes, where the weight of auxiliary link is set
equal to the weight of the original node. Then, we can
apply the Dijkstra algorithm to our problem without any
consideration of node weights. However, for practical
implementation, we add node weighits when computing
the tentative minimum distance for the unlabeled nodes
in the Dijkstra algorithm as follows:. d= min(d;, dq+c;+w),
where d; is the lentative minimum distance from the
source node 1o node (& V, ¢ is the distance from node
i to node j, and w, is the weight of node i< V. The
node weights for ADM-sites are set equal to 0. That s,
w; = 0 for iE N
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Now, we describe a heuristic procedure for improving
the initial tour. Here, we denote the current tour by T.
The first step of the beuristic procedure for improving
the initial tour is 1o remove currently unfavorable Steiner
nodes from the current tour 7. and then perform two-opt
heuristic (see Nemhauser and Wolsey, 1988).

Local Improvement Heuristic

Repeat Step 1 and Step 2 for some fixed computation
times, le. 10 seconds.
Step 1 (Removing Steiner nodes from the tour):

Step 1.1: Pick an arbitrary node s € ¥ such thar
16 (s.0)| 2 3.

Step 1.2: Pick an arbitrary node 1 = ¥ - N(T) such
that (s, N = E and |6 (r, G}} = 2.

Step 1.3: Define L the set of nodes {i © M(T)-5:
(i, 1), (¢.iY € E such that any node in L is
not preceded by node j € N following the
T from 5 in either clockwise or counter-
clockwise direction.

Step 1.4: Compute 1 (i) = c +w frf'XjEN(P,-)-{s,i}“}
'ZeEP, ¢, for all i€ L, where P; is the
path from s to node i € L following the
T such that N(P, CL

Step 1.5: If min,_,7 (i) <0, then replace the exist-
ing path Pj with {(s, 9, (z./)), where
J = argmingz,; 7 ().

Step 2 (Two-opt): If N(N I N £ &, then perform
two-opt for some iterations « , a predeter-
mined parameter. Then, go 1o Step 1.1

In the following, we consider preprocessing rules in
order 1© reduce the problem size assuming that triangle
inequalities are satisfied.

Preprocessing Rules

Define & (f) as a set of links incident 10 node i € V in

the graph G. Then. we bave the following results.

Rule 1. Let ¥ = - if}S (D] = | for i€ N.
That is, a leaf node can be deleted.

Rule 2. Let ¥ = N-i. if|6 ()| = 2 for iE N,
and {5, ), (i, k). G, &)} CE.

Rule 3. Let £= E-(j,k), ifié ()] = 2 for iEN.
and {(i, /). (i, k), G.&}} CE

Using the heuristic procedure and preprocessing rules.

we now describe an exact solution procedure as follows.
Exact Procedure

Step 1 (Preprocessing): Reduce the size of SRP
instance according to the preprocessing rules.
Define - the lower bound of SRP instance, and
et z=0.

Step 2 (Computing upper bound): Comgpute an
upper bound of SRP using the heuristic
procedure.

Step 3 (LP relaxation): Solve LP relaxation of SRP.
If LP optimal solution {x, u) is integral, and
has no subtour, then stop.

Step 4 (Generating constraints}: Generate violated
constraints of type (4), (13) and {14} as many
as we can. If any violated constraint is
identified. then add these inequalities and go
to Step 3.

Step 5 (Branch and bound): Run the branch and
bound procedurs, and obiain an integer optimal
solution z = (x, ), and let 7 = = If (x, u) has

subtour, then go to Step 4.

For the generation of subtour elimination constraints of
type (4), we follow a depib-first search procedure (see
Nemhauser and Wolsey, 1988), which identifies subtour
even if LP solution is fractional. That is, starting from a

node { E N, we search for a cycle such that every link
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in the cycle has non-zero value. Then, we examine if the
cycle does not contain all the nodes of N and violates
the constraints of type (4). The identification of viclated
constraints of type (13) is straightforward, For the
constraints of type {(I4), the choice of § is restncted to

|S| = 4 in order to reduce the computational effort.

5. Computational Results

We have tested heuristic and exact procedures for
various problem sizes. For each problem size, we have
generated 10 random instances. However, we report a few
hard problem instances. Here, note that the maximum
number of ADM sites allowed in a ring is 16 due 1o the
SONET protocol using only 4 bits in order to identify
ADM sites in the ring. We obtained optimal solutions tor
such small problem instances within a few seconds. Also,
in order 1o demonstrate the computational efficiency of
the proposed heuristic and exact procedures, we present
computational resvlts on the problems with more than 16
ADM sites, For his, we have randomly generated the

locations of nodes in Euclidean space having coordinates

ranging from 0 to 100. Also, we randomly generated the
link set over an initial tour, where the node sequence of
the initial tour is determined arbitrarily. The link weights
were generated according to the distance between nodes
on the link set. The node weights for Steiner nodes werc
generated uniformly between 1 to 10, rather small value
compared to the weights of links, in order 1o make the
problems more difficult. The developed procedures were
coded in C coupled with CPLEX 5.0 on Pentium PC 100
MHz. Test results using valid inequalities (i3) and (14)
are reported in Table |. The first column indicates the
problem size of the form, |¥|- |N|- |E|. where & is
the set of ADM sites, N is the set of Steiner nodes, and
E is the set of existing links in the network. The column
heading "LP" indicates the initial LP lower bound of SRP
before we do the branch and bound, the Step 5 of our
proposed exact procedure. Since we showed that the LP
bound of SRPF can be arbitrarily bad compared to (hat
of SRP in terms of LP bound in the Proposition 1 and
Example 1, we do not present the LP bound of SRPF.
The column heading "OPT™ indicates the optimal

objective funciion value obtained by the cutting plane and

Table 1. Computationat results of some hard problem instances.

GAPIOPT SRP SRPF CPLEX
SIze Le OFT Ue {%) {seconds) {seconds) {seconds)
20, 10, 200 499.0 544 544 0.0 2 200 5,600
30, 20, 500 480.0 501 511 2.0 8 1,411 7,659
30, 20, 500 521.0 544 544 0.0 131 6,215 3277
30, 20, 300 556.5 600 601 0.2 203 14,443 *
20, 40, 600 B3.0 427 435 1.9 9,029 45,852 *
20, 40, 600 435.0 456 458 0.4 1,048 2,169 *
30, 36, 700 531.0 558 560 0.4 44 17,598 ‘
30, 30, 700 489.0 535 545 19 1,081 93,661 *
30, 30, 700 438.5 469 474 11 3,235 65,056 *
30, 30, 700 4450 452 502 2.0 1,072 54,084 *
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the branch and bound methods, where compatation times
are recorded in the sixth column labeled as "SRP" based
on SRP. In order to compare the two formulations, the
computation time of SRPF is also presented in the seventh
column, labeled as "SRPF’. All computation time is
measured in seconds. The upper bounds obtained by the
heuristic procedure are recorded in the fourth column,
labeled as “UB". In our computational experiments, we
have run two-opt heuristic for = 100000 iterations. Total
computation time to obtain an upper bound does not
exceed 10 seconds for all test problems. Also, note that
the ratio “GAP/OPT" does not exceed 2 %, where GAP
= UB OPT. Computation times of the CPLEX based on
SRP with subtour elimination constraints are recorded in
the eighth column, labeled as “CPLEX . Asterisk mark
(*) in the eighth column indicates that CPLEX failed to
find any feasible solution within 24 hours for the

corresponding problem instance.

6. Conclusion

We have presented the problem SRP arising from the
deployment of SONET in practice. In order to solve the
SRP optimally, we have developed two mathematical
models and some valid inequalities for the problem. Also,
we have developed an efficient heuristic procedure (0
provide tight upper bounds.

Computational results using the cutting plane method
show that SRP is better than SRPF in terms of
computation time. We have observed that LP bound of
SRP is much stronger than that of SRPF, and that the
valid inequalities are effective in tightening LP bounds.
Also, computational results demonstrate that the heuristic
procedure provides very tight upper bounds for the
problem. For on-going research, we are looking into the
problems of bidirectional rings and multiple types of
SONET rings.
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