Biocompatibility and Bone Conductivity of Porous Calcium Metaphosphate Blocks

생분해성 다공질 Calcium Metaphosphate 블록의 조직적합성에 관한 연구

  • Lee, Yong-Moo (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Kim, Seok-Young (Department of Material Technology, College of Engineering, Yeungnam University) ;
  • Shin, Seung-Yun (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Ku, Young (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Rhyu, In-Chul (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Chung, Chong-Pyoung (Department of Periodontology, College of Dentistry, Seoul National University)
  • 이용무 (서울대학교 치과대학 치주과학교실) ;
  • 김석영 (영남대학교 공과대학 재료금속공학부) ;
  • 신승윤 (서울대학교 치과대학 치주과학교실) ;
  • 구영 (서울대학교 치과대학 치주과학교실) ;
  • 류인철 (서울대학교 치과대학 치주과학교실) ;
  • 정종평 (서울대학교 치과대학 치주과학교실)
  • Published : 1998.12.31

Abstract

direct bone apposition during bone remodelling. To address these problem, we developed a new ceramic, calcium metaphosphate(CMP), and report herein the biologic response to CMP in subcutaneous tissue, muscle and bone. Porous CMP blocks were prepared by condensation of anhydrous $Ca(H_2PO_4)_2$ to form non-crystalline $Ca(PO_3)_2$. Macroporous scaffolds were made using a polyurethane sponge method. CMP block possesses a macroporous structure with approximate pore size range of 0.3-1mm. CMP blocks were implanted in 8mm sized calvarial defect, subcutaneous tissue and muscle of 6 Newzealand White rabbits and histologic observation were performed at 4 and 6 weeks later. CMP blocks in subcutaneous tissue and muscle were well adapted without any adverse tissue reaction and resorbed slowly and spontaneously. Histologic observation of calvarial defect at 4 and 6 weeks revealed that CMP matrix were mingled with and directly apposed to new bone without any intervention of fibrous connective tissue. CMP blocks didn't show any adverse tissue reaction and resorbed spontaneously also in calvarial defect. This result revealed that CMP had a high affinity for bone and was very biocompatible. From this preliminary result, it was suggested that CMP was a promising ceramic as a bone substitute and tissue engineering scaffold for bone formation.

Keywords