Discrimination of a Pleasant and an Unpleasant State by Autoregressive Models from EEG Signals

EEG신호의 시계열분석에 의한 쾌, 불쾌 감성분류에 관한 연구

  • Published : 1998.04.01

Abstract

The objective of this study is to extract information from electroencephalogram(EEG) signals with which we can discriminate mental states. Seven university students were participated in this study. Ten stimuli based on IAPS (International Affective Picture Systems) Were presented at random according to the experimental schedule. 8-channel ($O_1$, $O_2$, $F_3$, $F_4$, $F_7$, $F_8$, $FP_1$, and $FP_2$)EEG signals were recorded at a sampling rate of 204.8 Hz for visual stimuli and analyzed. After random ten sequential stimuli presentation, the subject subjectively assessed the stimulus by scaling from -5 to 5. If the stimulus was the best and the worst, it was scored 5 and -5, respectively. Only maximum and minimum scored-EEG signals within each subject were selected on the basis of subjectively assessment for analysis. EEG signals were transformed into feature objects based on scalar autoregressive model coefficients. They were classified with Discriminant Analysis for each channel. The features produced results with the best classification accuracy of 85.7 % in $O_1$ and $O_2$ for visual stimuli. This study could be extended to establish an algorithm which quantify and classify emotions evoked by visual stimulus using autoregressive models.

Keywords