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0. Introduction

In this paper we investigate the existence of

solutions #(%f) for a beam operator L=%i+
under the Dirichlet boundary condition on the
interval (~7/2,7/2) and periodic condition on the
variable ¢,

Uy H U +OUT —au” = f(x,1)  jp (-7[2,7[2)xR
u(:tﬂ/2,1)=ux,(iﬂ/2,t)=0’
u(x,t)=u(_x,t)=u(x,—t):u(x,H—n')’
when the jumping nonlinearty crossing the first
eigenvalue. The eigenvalues of L under the
Dirichlet boundary condition and periodic condition

on the variable ! are given

A’mn =(2n+1)4 —4m2,(m,n=051,2, ...... )
Let H be the Hilbert space defined by

» YRR FHUY 2RI 25
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H={uel Q)| u iseven in x and 1}

Then the equation can be stated as
Lut+bu* —au =f |n H

Recently, the research of the multiplicity of
solutions of several operators in the elliptic partial
differential equations has been done. Many authors
try to find the solutions of several operators.

In [3), the authors investigated the multiplicity
of solutions of the nonlinear wave equation. In [4],
the authors investigated the multiplicity of
solutions of the elliptic
McKenna[l1] found the solutions of the equation

nonlinear equation.

—Au+bu” ~au” =54, in Q,
u=0 on 0,

at least 2 solutions, if s>0

exactly 1solutions, if s=0

has no solution, if s<0 if a<A<b<ai,,

at least 4 solutions, if s>0
and

Cif a<h, A<b<dy

In this paper, we investigate the existence of

no solution, if s<0
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solutions of a beam equation with jumping
nonlinearity.

1. A variational reduction method

We consider the beam equation under Dirichlet
boundary condition on the interval (=#/2,7/2) and
periodic condition on the variable ¢
in (-7m/2,m/2)xR
u(iﬂ/Z,t)nuxx(ifr/Z,t)=O’

U+ +bu" —au” = f(x,1)

u(x,0) =u(=x,0)=u(x,~t) = u(x,t +7)
Here we suppose the relation between eigenvalues
and the coefficients of the jumping nonlinearty a
and b is
Ap=-15<a<ly=1<b<i =17

Let L be the beam operator £=%s U Then the
eigenvalue problem
Lu=iu in (-7/2,7/2)xR
u(tn/2,)=u_(+x/2,t) = 0
u(x,0) = u(—x,t) = u(x,~t) = u(x,t + 7)
eigenvalues 4=  and
B (Mn=0123,..... )

has infinitely many

corresponding  eigenfunctions
given by
A, =@2n+1)" —4m® (m,n=0,1,2,---" )

@, =cosZmtcos(Zn+1)x, (m,n=0,12,------ ).

Then the set (Pm| mn=012,--}

orthogonal set in H.
Theorem 1 Let f=¢dutfu (0, €R) in the
equation (1.1). Then we have:

1) If ¢ <0, then (1.1) has no solution.

2) If ¢.=0 and < #0 then (1.1) has no solution.
Proof Rewrite equation (1.1) as
(L—/lon)u+(b’+/7.oo)u+—(a+/'{00)u_=f(x)_

Multiply # to the both sides and integrate over
Q, then we have

Ji@ =y ~ (a2 Y = ¢, [
Q Q .

By the self-adjointness of L and orthogonality of
eigenfunctions, the first statement follows since
the left hand side is nonnegative. If ¢ =0, then
#=0 ig a solution for (1.1). But it does not satisfy

(1.1) when < #0. This
statement.

second
Q.E.D.

proves the

Let V be the two-dimensional subspace of
{Bons Bart and W  be the

orthogonal complement of ¥ in F*(Q). Let P be

I'(Q)  spanned by

the orthogonal projection of L*(©) onto V. Then

every #€L(Q) can be written as #=v+w, where
v=Pu and W=U—-Pu_Then the equation (1.1) is
equivalent to
Lv+ P(B(v+w) —a(v+w) ) =¢,dy, +Cofy,
Lw+ (I - PYb(v+w) —alv+w))=0
These are the system of equations with two
unknowns v and Ww.

Lemma 1 For fixed veV, (1.4) has a unique
solution w=8(v). Furthermore, (") is Lipschitz
continuous in V.

Proof We use the contraction mapping theorem.
Let #=(a+b)/2, Then (1.4) becomes
(L=8)yw=(I-P)b(v+w) —a(v+w) ~6(v+w)) _ (15)
w=(L-6)"(I-P)g,(w)
where &MW)=bV+w)" —a(v+w) —S(v+w)

Since

2. (w) = 8,(w))| < [b = 6] -Jw, —w,|

&, 0n)— g, (wy)| <[b = 8]-fw = w, |
where I denotes the norm in L(®). The operator
(L=8)"(I-P) is a self-adjoint compact linear map
from W=(-P)L(Q) into itself. Its eigenvalues in

W are (Yw=9)" where 4m#1. Therefore its I
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norm is Max{l17-8L1/i-15-8}}  gince
max{|§ — b}}a 8]} < min{j1 7~ 5], ]-15- &}

it follows that for fixed veV, the right hand side
of (1.5) defines a Lipschitz mapping of W into
itself with Lipschitz constant less than 1. Hence,
by the contraction mapping principle, for each
velV, there is a unique weW which satisfies
(14). And €0") is Lipschitz continuous in V.
Q.ED.

This lemma says that the study of the
multiplicity of solutions of (1.1) is reduced to the

study of the multiplicity of solutions of an
equivalent problem
Lyv+ P(b(v+0(v)) —a(v+O0WM) ) =cdp+C2fs . (1.6)

defined on the two-dimensional subspace V
spanned by {Boor P},

If v20 or v<0, then #(")=0_ For instance if
we take vz0 and f(M=0  the equation (1.5)
reduces to

—A0+(I~PYbV —av) =0,
which holds since v'=v, v'=0 and (~-Plv=0
for vevr.

Since ¥ is spanned by {#w:#u}, there exists a

cone €\ defined by

Ci={v=cdy+c,¢u| ¢, 20, o Ska}
for some k>0, so that v20 for all €€\, And a
cone s defined by

Cy={v=cdy+cyd, | c, <0, |02|Sk)c,}},
for some k>0, so that v<0 for all V€. Thus
even if we do not know 90V} for all veV, we

know 6(1)=0 for veC VW i And C; and Ci are
defined as follows;

C,= {v= 1y + Cofbyy ’ ¢, 20, klcl) 26}

Cy={v=cy +crpy | 6, 20, k'cl|£,cz|}‘

Now we define a map ®:V—=>V by
OW)=Lv+ P(B(v+0(v)) —a(v+8(v))"), veV.

Then @ is continuous on ¥ and we have the
following lemma.

Lemma 2 For veV and ¢20, ®(cv)=cd(v)
Proof Let ¢20, If v satisfies
LOW)+(I - PYb(v+6(v))" ~a+6()y ) =0
then
Le@@)+ (I~ P)b(cv+cO(v)) —alcv+cO(v)) =0,
and hence €(cv)=¢6(¥), Therefore we have
Q(cv) = L(evy+ P(b(cv +8(cv)) —alev+6(cv))™)
= L(ev)+ P(b(cv+c8(v)) —alcv+cB(v)))
=cL{(v)+cP(b(v+6(v))* —ca(v+8(v)))
=c®(v), QE.D.
2. Multiplicity results for 9<4p <b<4,

Now we want to investigate the image of &
under @©. From now, we will use the notation

s= Ay —alAg, +441)
A+ Ay —2a

for simplicity. To make it easy to generalize, we
use “w A instead of its real values (constants).
First we consider the image of Ci under ®. If

V=Cu +C:0u 20 then we have
D) = Lv+ P(b(v+O(W))* —a(v+0())7) (= Ly + P(b(»)))

= =, Agoboo — Caha sy + B(C B + C28001)

=0, (b= Ay o — 2 (A4 = D)y
So the images of the rays ©$witkcu (c,20) can

be calculated and they are
(b= Ao )oo T ke (Ayy ~ By, , (e, z0)

Thus ® maps € onto the cone

Ay —b

R|={d\¢m+d2¢4l ‘ d‘ZO, ldzlékb Aoo

d}

Next we consider the image of C; under @. If
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V=—Cif + o0 <0, (6,20, |oy| Ske) ’
then we have
®(V) = Lyv+ P(b(v+8(v))" —a(v+6(v))") (= Lv+ P(—a(v)))
= ¢, Ao = C2Auby — A1y — E100)
=, (Agp ~ Do — €2 (A4~ ANy,

So the images of the rays ~6fwtkefn.(€20) can
be calculated and they are

¢ (Ao — aWoo F k3 (Ayy — AN, . (¢, 20),

Thus ® maps Cs onto the cone
Ay—a

R, ={d gy, +d,9, ] d z0, ldzlsk d}

Lemma 3 For every V=6#w*¢:%u 20 there exists
a constant >0 such that (P()¢wn)2d leal.
Proof Let g@)=bu"~au™ and

V= €yfgy + Cobyy + (g +Ca841)
Then

O(v) = L(Chpo + C2800) + P(8(€1f0 + Cofbay + 06100 + 26001)))
Hence if # =S +¢:u+60(Cu+C:04) | then
(D), 8)) = (L +20)C1o0 + €2841)s Poo) + (&4} — Aot o) |
Since L is self-adjoint, (£+Ax)#w)=0  And
g(u)— Agut = bu™ —au™ — Agu” + Aggt”

= (b= Aop)u" +(Agg ~ )™ 2 7]
where ¥ =min{b~A,, 4y, —a}>0,
Hence (POhgw)zy I 6w Thus there exists d>0
such that e 2 déxs| and therefore

}’_ﬂuktoo zdﬂul-|¢4.|2d~ Iu¢41l=dlczl . QED.

This lemma says that the image of @ is
contained in the right-half plane, ie. ®(C:) and
®(C,) are the cones in the right-half plane.

Here we have‘ three cases, & CH, Rich
R =R, The first case holds if and only if the

nonlinearity bu* -au™ satisfies »>¢, The second
case holds if and only if the nonlinearity

b<{ The last case holds if

and only if the nonlinearity bu'-au’

b=4

bu* —au” satisfies

satisfies

Consider the restrictions ®lc (A<isd) of @ to
the cones ©/. Let ¥ :cplc,, e @GV
First we consider ®;. It maps ¢ onto K. Let

!, be the segment defined by

Ay b

I ={Bo, +dyp| |dy| <k b*_' ;00

}

Then the inverse image ®i'(}) is the segment

1
b=, (D0 +cz¢41)| |Cz| <k}

L=o7'()={

By Lemma 2 ,%? :C = R is bijective.
Next we consider Ps. It maps G onto &. Let

I; be the segment defined by
Ay

b=+ | kT30

Then the inverse image ®3 (5) is the segment

PN
L= 0=t eo) el <k

By Lemma 2 ,®3:C; = R, s bijective.

2.1 The nonlinearity bu'—au”  satisfies
b 204 — a(Ago + Aa)
Ao + Ay —2a

The relation R SR holds if and only if the
nonlinearity bu'—au” satisfies #>¢. We investigate
the images of the cones ¢: and C: under @,
where

C,={v=cy +0,04 ’ ¢ 20, klcl‘ 20y}
C,={v=cdy + s ] ¢ 20, klcl‘ £ ‘CZ‘} .

The image of C: under ® is a cone containing

Ay —b A, —a
R, ={d gy +dp, | 4,20, kb‘”/lmdlsdzskl‘”

— m_a

d,}
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and the image of C: under @® is a cone
containing
- b
Ry ={di+ dody, | 4,20, ~k9 724 <q < pMu=b g,
2'00 —-a b- 00 .

Consider the restriction ®; and P., and define

the segment %2 and / as follows;

Ay —~b A, —a
L ={¢e+dby | kb‘_‘%o Sd;ﬂkh}
(1]
Ay —a -b
14={¢00+d2¢20 [ —kzi'gt‘"gﬂdzﬁ—ka_o—%o'}.

We want to prove P2 and Ps are surjective.

Lemma 4 For i=24 let 7 be a simple path in
R, with end points on @R (starting from the

R intersects only one

origin) where each ray in
point of ¥. Then the inverse image @I (*) of 7
is also a simple path in C; with end points on

oC,, where any ray in C (starting from the
origin) intersects only one point of this path.
Proof Since 7 is closed and ® is continuous in

v, ®'(") is closed. Suppose that there is a ray
(starting from the origin) in &, which intersects
two points of 7' ("), say # and @ (@>1), Then
@(ap)=a®(p)  which ®(p)er  and
®(ep)ey. This contradicts to the fact that each

implies

ray (starting from the origin) in € intersects only
one point of 7.
Regarding a point P€V as a radius vector in

the plane V. Define the argument 8P to be the
angle from the positive axis %o to 2.

We claim that ') meets all the rays
(starting from the origin) in Ci. If not, ®;'() is
disconnected in Ci. Since ®'(") is closed and
meets at most one point of any ray in Ci, there

are two points P and P2 in G such that @/ @)

does  not peC, with
argp, <argp<argp, let ! be the segment with end

contain a  point
points 7 and P then ®:® is a path in &,
where ®/(P) and P/(P.) belong to 7. Choose a
point 9€®() such that @89 s
arg®,(p)) and 2e2P;(P,). Then there exists a point
9 of ¥ such that 9'=#4
7@ and ¥4 are on the same ray (starting

between

for some #>0, Hence

from the origin) in G and
argpl<argd>,“(q’)<argp2’ which is a contradiction.
This completes the proof. Q.E.D.

Theorem 2 For 1<i<4 the restriction ®/ maps

Ci onto R, Then ® maps V onto &. In

particular, 1 and ®s are bijective.

Theorem 3 Suppose 2>¢. Let f=¢fu+c:fy eV
(¢15¢; €R) . Then we have:
1) If / belongs to interior of Ri, then (1.1) has

exactly two solutions, one of which is positive
and the other is negative.

2) If J belongs to boundary of R, then (1.1) has
a positive and a negative solution.

3) If / belongs to boundary of &, then (1.1) has
a negative solution,

4) If / belongs to interior of R or interior of &,
then (1.1) has a negative solution and at least
one sign changing solution.

5) If / does not belong to %, then (1.1) has no
solution.

22 The  nonlinearity bu"-au”  satisfies
b< 2'100141 "a(’loo +/14|)
Ao + Ay, —2a

The relation & €& holds if and only if the
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nonlinearity bu*—au” satisfies #<¢. We investigate
the images of the cones € and C: under @,
where
Cy={v=cdy+c by | ¢, 20, kle<c,}
Co={v=Cbu+0rfn| ¢, 20, Ko|sleft
The image of C; under ® is a cone containing

Aoz, cq skl
A —~a

Rzlz{d1¢oo+d2¢u l d 20, k

-b
1
d
b, 1},

and the image of Ci under ® is a cone

containing

Aa=by cq < xPaza
-2 A

b 00 00

R'={ddp+dyd, | d,20, ~k

d}

Consider the restriction P2 and ., and define

the segment 2’ and %' as follows;

Ay —a Ay —b
L'={+dofyy | RO <d, k702
2 {¢00 z¢41‘ /lm—a 2 b_loo}
Ay —b Ay —a
14'={¢00+d2¢41 ‘ 'kblt SdZS—-k—i]—_;}
00 .

We want to prove ®: and P4 are surjective

Lemma 5 For =24 Jet 7' be a simple path in

R' with end points on PR', where each ray in R’
(starting from the origin) intersects only one point

of 7'. Then the inverse image Pr ") of 7' is also
a simple path in ¢ with end points on 9C:, where

any ray in © (starting from the origin) intersects
only one point of this path.

Theorem 4 For i=24 the restriction ¥/ maps
And ® and 9P;

Therefore @ maps ¥V onto &,

C onto R are bijective.

This theorem implies the following results.

Theorem 5 Suppose b5<¢. Let f=6do+cfs €V
(¢15¢, € R) . Then we have:

1) If / belongs to interior of Rs, then (1.1) has

exactly two solutions, one of which is positive and
the other is negative.

2) ¥ / belongs to boundary of &, then (1.1) has
a positive and a negative solution.

3) If / belongs to boundary of R, then (1.1) has
a negative solution.

4) If / belongs to interior of R or interior of Ry,
then (1.1) has a negative solution and at least one
sign changing solution.

5) If / does not belong to &, then (1.1) has no
solution.

2.3 The nonlinearity bu'—au” satisfies
b= 2/'Looﬂ'.u =~ a(Agy +4y1)
Ap + gy —2a

The relation % =R holds if and only if the
nonlinearity bu* -au™ satisfies ¥=¢. Consider the
map ®:V >V defined by

QW)= Lv+ P(b(v+O8(W)) —a(v+8(¥))), veV
where #=¢. Now we want to investigate the
images of the cones €¢: and C: under @®. For
fixed v, we define a map® :(ds4) =V a3 follows

©,(8)= Ly + P(b(v +w) ~a(v+w)) be(ydy),

where veVand a is fixed.

Lemma 6 If @ is fixed, then v is continuous at

by=¢

Proof Let #=(a+8)/2  Then (1.3) becomes

(L=-8)YW=(I-PYbv+w)' —a(v+w) -5(v+w))
w=(L=8)"(I-PYb(+w) —a(v+w) ~S(v+w))

Let gb.w)=b(v+w)' ~a(v+w) =5(v+w) The
w=(L=-8)"(I-P)g(bw).

By Lemma 1, this equation has a unique solution

w=6,0") for fixed &. Let "o =% (") Then we get

w=w, =(L-6)"(I - P)g(b,w)~g(by, w,))

.,74,..
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=(L-8)" (I~ P)(g(b,w)~ g(b,wy) + g(bywy) — g(by, W]
=(L~8)"'I-P)(g(b,w)-g(b,w,)]

+(L~8)" (1~ P)[g(b, wy) - g(bys wy)]
Since

lg (8, w) - g(b,w,)| < max{lp—5,|5 - afilw—w,|
and

y= max{lb-&],|6 —al} <1

1
A —d
then we have

S T ey ,llwwofl b

M

- v+ w, |- [b— by

b

”W—Wowﬂm

which shows that W=6,(v) is continuous at %.
Thus @8 is continuous at %. Therefore ®» is

continuous at . Q.ED.

First, we investigate the image of the cone C:
under @, Let

Pi=gp+k

’Lu -b }'4
) = + k4
b— iy, 41 and Py =Py

Fix a. Define 0=Iargpl_argp2'.
Since 0205”/2‘

| (@+5)(Agg + Ay) = 2kAgy Ay, — 2ab
‘(’100 —a)( Ay —b)—kz(ﬂ.“ —a)(A, - b)|.

tan@ =

When & converges to ¢, tané converges to 0.
Since 0£0<#/2, 6 converges to 0. Note that @,
maps C: onto R, and ®, maps C: onto R
when &<¢. So if b converges to ¢, the angle
between & and &' converges to 0. Since P is
continuous at #=¢", ®; maps C, onto the ray

Ay —b
R,"={dp, +dyp, | d =0, d2=kb‘”

d}

oo
Second we investigate the image of the cone

Ci under @. Let

Ay —b Ay —a
By ) 41 = Y ehCll
=y b 7oy — @, and g, =0y o —a

Pu

Fix a. Define 9=[8d-a89,| Since 0<o<n/2,

g w | @+ 0W g + )~ 2kAg Ay ~2ab |
(Ao = @)(Aog — B) = k2 (A — a)(Ayy - b))

tand converges to 0. '

When & converges to ¢,
converges to 0. Since 02#<7z/2 Note that @,
and @,

when 5<¢. So if & converges to ¢, the angle

maps C: onto R, maps C: onto R,

between R: and &' converges to 0. Since P, is

continuous at ¥=¢, @, maps Ci onto the ray

’141

—{d¢00+d2¢41 ’d 0, d kﬂ'oo d}

Theorem 6 For i=24 the restriction P maps
Ci onto R". And @ and P are bijective.

Therefore, ® maps V onto R, where =R =R;

Theorem 7 Suppose 2=¢. Let J=cfw+cd, eV
(¢, €R) . Then we have
1) If / belongs to interior of R, then .(1.1) has

exactly two solutions, one of which is positive
and the other is negative.

2) If / belongs to boundary of R, then (1.1) has
a positive solution and a negative solution, and
infinitely many sign changing solutions.

3) If / does not belong to R, then (1.1) has no
solution.

3. Conclusion

We investigate the existence of solutions of the
nonlinear beam equation under the Dirichlet
boundary condition with jumping nonlinearity. The
nonlinearty term is given by bu*-au™ and the

forcing term is given by ©S%w*¢fu. We divide

into three cases, which are R <R R, CR zpd
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R =Ry The egation has two solutions, a negative
solution, a negative solution or one sign changing

solution according to where the function S

belongs to.
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