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The Case of Proportional Cell Frequencies
for the Two-Way Cross-Classification with Interaction !

Jong-Duk Kim 2

Abstract

The case of proportional cell frequencies for the two-way cross-classification
with interaction is considered. Several types of hypotheses for the general un-
balanced data that are commonly used in the literature are shown, and they
are written out for this particular case. A reparameterized form of the cell
means model is defined to establish the reparameterized model, and orthogonal
property of the model is shown using the augmented matrix and the numerator
sums of squares are computed. Different ways of producing the same analysis
of variance tables are shown in both orthogonal and nonorthogonal situations.

Key Words and Phrases: proportional cell frequencies, hypothesis, reparame-
terization, orthogonality, nonorthogonality.

1. Introduction

Consider the two-way cross-classification with interaction. This may be written
as

yijk:,u'ij+eijk> i:1127"'aa7j:1327"'7b’k:1727""nij (I‘)

where y;; is the kth observation at the ith level of A and the Jth level of B and
e;jx 1s the error term. We assume that Yijk 1S independently normally distributed
with mean y;; and common variance 02. We further assume that the number of
observations per cell, n;; > 0 for all 4, 5, and n;; > 1 for some ¢ and j.

We now consider the special case in which the number of observations per cell
is given by n;; = ric; where r;, i = 1,2,---,a and ¢j, j =1,2,--- b are known row
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and column constants. This is known as the case of proportional cell frequencies or
proportional cell frequency model, and this model is known to have orthogonality
property (see for example Seber 1964, John 1971, Winer et al. 1991). In this article
we show several different expressions for the hypotheses in this particular case. We
then consider a reparameterization of the cell means model and relate this to the
overparameterized model. The results are compared and discussed.

2. General Discussion of Hypotheses for the Two-Way
Cross-Classification

For the general unbalanced two-way cross-classification model with interaction
given in (1), various hypotheses have been developed, and we list seven hypotheses
for factors A, B and their interaction A x B that are more commonly used in the
literature (e.g., Speed et al. 1978, Hocking 1985, Searle 1987).

Hy : m.=pm, i=1,2--,a—1
b b a ngi
2,
H:i ZnZJMz]—ZZ ]_]ﬂk] 2—1,2> ,a—1
=t j=lk=1 "
b n b n
H NoHpy =3 Yu i=1,2--,a-1
i=1 i i=1 Ng.
Hp : 5;=H, j=1,2 b—1 (2)
" n; nk .
Hgp anJ/J‘IJ—ZZ T 7=12,---,b~1
= lk 1 4
a n; Nn;p .
HEK : Zn_”',u*z]—z—z.ufzb J=L4L2,---,b-1
=1 "7 i=1

Hup : Mij — :u’i._/J‘ﬂ +0.=0 i:1>2""->a’_1,j:1’27"'7b—1

where

We also list three types of ANOVA tables, which we shall call the sequential
sum of squares, partially sequential sum of squares, and marginal means sum of
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squares. The reduction in sum of squares is denoted by R()-notation in fitting
E(yijx) = p+ a; + G + (af);; -

Table 1. Sequential sums of squares

Description Hypothesis SS(R()-notation)
Row effect my R(alp)
Column effect Hg R(Blu, @)
Interaction effect Hyp R((af)|p, o, B)
Residual Q)

Table 2. Partially sequential sums of squares
Description Hypothesis SS(R()-notation)
Row effect H R(a|p, B)
Column effect Hy . R(flp, a)
Interaction effect Hup R((ap)|u, @, B)
Residual Q)

Table 3. Marginal means sums of squares
Description Hypothesis SS(R()-notation)
Row effect Hy R(a|u, B, (aB))
Column effect Hg R(B|p, o, (aB))
Interaction effect Hyp R((aB)|u, @, B)
Residual Q)

3. Hypotheses for the Proportional Frequency Case

Assuming the proportional frequency model, the cell frequencies are n;; = r;c;
fori=1,2,---,a, j=1,2,---,b. We want to write out the different hypotheses of
the two-way cross-classification with interaction for this particular case.

Theorem 1.  For the proportional frequency model the null hypotheses in (2) are
as follows:

b b
Hy Z#Z]:Z/l'aj t=1,2,---,a~1
j=1 j=1
b b
Hy=HYy : Y ciuj=)» cipa t=12-,a-1
j=1 j=1

Hp @ > = pp J=12,---,b~1
=1 i=1
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a a

Hp =Hy Zri/‘ijzzri/‘ib j=12-,a-1
Hup : uij—ﬂi.—ﬁ.j+ﬁ..:0 i=12,-,a-1
j=12,---;b—1

Proof. We shall first prove for factor A. Wedenoter. =3 7 ;r;andc. = Z?’:l c;-

For H4, we have
Hjy:po=p, 1=1,2,---;a—-1

since this hypothesis is independent of n;;. This is equivalent to

b b
HA: Z'uijzzuaj i=1,2,---,a—1.

For HY%?, substituting n;; = r; ¢; and n;. = r; c. into (3) we directly have
A J J

b b
H:l*: ch“ijzch“aj i=1,2,---,a—1.
j=1 j=1

For H}, substituting n;; = r;c; and n.; = r.c; we have

rkc

a b
H : ZCJNU—ZZ—“M Z%Zcﬂ‘kﬂ' i=12-,a-1
k=1 j=1

j=1k=1 T Ci

We note that ¢ = 1,2, ---,a is implied for all the three types of hypotheses.
We shall now show that H} is equivalent to H}*. We have H) = H}* since the
right hand side is constant. To show this in detail, we let

b
chliij:S i——~1,'-~,a—1.
j=1
Thus
= Tk Tq
§=>Y —5+ 25,
k=1
where S, = Z?=1 Cj Paj - But
a—1
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So

which is
b b
ZCj,uij:ZCjuaj i-:l,---,a—l.
3=1 j=1

To show that H}* = H) we write

M«

b
Cj Mk = chuij
j=1

S,
i
Jat

2

ﬁ
ol
Nhe

a b
Cilki = DTk D CjMij
k=1 j=1

k=1 =1
1.8 b b
=D TR Cikki = Y cihij-
T. . .

k=1 j=1 j=1

For the A x B interaction effect we clearly have
Hyp : Mij — H;. _E]+l_l‘ =0 1=1,2,--+,a—-1, J=12,---,b-1
since it is independent of n;; . Q.ED.

Thus we see that H) and H}* are equivalent but that H, is not uniformly
equivalent (i.e.Vu) to H) or Hy* unless¢; =1, j =1,---,b. Similar statement can
be made for factor B.

4. Reparameterization
We consider a reparameterization of the two-factor cell means model for the
proportional frequency case.
Theorem 2. Let the parameters y, ;, f; and (08)i; be defined by
a b
rcs
po= >

i=1j=1 ¢

b
C]' .
o = S %9 i=1,2--a-1
; j;c.“” p©

123
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a
i .
2.217'.

b a
C; C;
(@B)ii = mij—) Thi - -—uzj + ZZ rl Jwg i=12,0-1
P

11 i=1 j=1

Then we have

[+ o; + B + (af)s; 1=1,2,---,a—1
i=1,2,,b—1
B0y — ?{zfﬂa— g%z,,(aﬂ)w 1=1,2--,a-1

j=

E(yZJk)=4 “_z;l 11:011“-,3;'— g_ll:(aﬁ)lj i=a
j=12---,b—-1

w- T Bar- TR 86 - T el i<

\ ] =

Proof. Fori=1,---;a—1,5=1,---,b—1, we have

(:é%uéj—ﬂ)Jr(g%ua W) -3y

=1 j= 1

L + 2+ (@B

i

Hij
= p+o;+B;+ (af)i; -
Fori=1,---,a—1, j = b, we obtain:

(@B)ij = pij—o—PBj—up

-1 . b-1 -1 . -1, b-1
J . J J 1 A. J
o@By = Y Jw—d Za-d U= 2y
=1 j=1°% =170 = =
b : b b-1 b
Cy C; C; C,
= (ZC—JM]'*—mb)—(ZElai—ai)— Elﬂj—< C—J#—#
b-1 b-1 c
pp=p+ai—y 2 -3 ”(aﬂ)zﬁz u“——ai—-—u
) = Cp Cp

The last three terms vanish since
_g(ic; o )_ oo C
= o Pt c Hij — 1 cbﬂz] Cb“ .

j=1
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Thus we have

b— 1 b—
Bib = p+ oy — Z Z—J
3=1 =1
Fori=a, j=1,---,b—1, we obtain:
(aB)iy = mij—ai—Bi—p
a—1 a—1 r a—1 r a—l
K K
Z (aﬂ)m = Zr_l‘ij Z_az Z IBJ —
i= 1 =12 =1 i=1 a

a— 1

T; 7 27 o
= (Z M — /J'a]) T_z i_(zr_zﬂj_ﬁ])_( r_z,u'—/J')
a i=1 @ i=1 ¢

=1
oty aly T T T
,U'ajzﬂ—zr_zai‘i‘ﬁj Z aﬁ)zﬁ-z Z,U“~—5 i~ k-
=1 @ =" a

The last three terms vanish since

a

T. T. T; T; T.
—Bj=—-<z i — u)=ziuij——u-
Tq Tq

i=1 i=1 Ta Ta
Thus we have
a—1 r a~1 r
2 1
foj == i+ B =Y —(af).
i—1a =1 Ta
For ¢ = a and j = b, we obtain:
a—1 r b-1 Cs a—1 r
K
fab=p— Y ;=Y 2B -3 ~(af)y;. QE.D.
i=1"a =1 Cb =1 e

7
a
= s
(af)
where
a = (011, Qg, -, aa—l)l
é = (131) ﬂ?) Ty ,Ba——l),
(a_ﬂ) = ((eB)i1,- -, (@B)1p-1, (@B)a1, -, (af)ap—1, - ---- ,

(aﬂ)a—l,l, Tty (a,B)a_1,b_1)’ .
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Examining the structure of (3) carefully, we can write the reparameterized model in
matrix form as follows:

E(y) = WX,Pg, (4)
where W is the cell frequency matrix, Diag(1,,;), and the basic design matrix is
Xo=(1ap, 1o ®1, 1,01, I, ® 1),
and the parameter matrix is
P = Diag(l, A, A}, Al ® A}),
where ® denotes the Kronecker product defined as (a;;B) for A ® B, and

1, =(1,1,---,1), a x 1 vector of ones,
I, = Diag(1,1,---,1), a x a identity matrix,
Ag = (Ii-1,80-1), Ap = (Tp-1,85-1),
T c

1| ! 1|
Sg—-1 = —— : ) Sp—1 = ——

Ta Co

Ta—1 Ch—1

We can approach this reparameterized model from a different direction; that is,
we begin with the classical overparameterized model,

Yisk =p+ai+ B+ (aB)ij e i=1,-,a
k:l,-.-,nij

and then impose the conditions

a b b
Z’riaizo, ZCJ',B]'=0, Zq(aﬂ)zj:O, ti=1.-,a-1,
=1 i=1 =

a

Zri(aﬂ)ij=07 ]:17,b » (6)

i=1
which lead to a full rank model. We then have the following results.

Theorem 3.  For the above reparameterized model, the hypotheses H% (or H%*
Hg (or Hg'), and Hyp for the case of proportional frequencies are given by

H = H} a=0
Hy=Hf : =0
Hap : (af)=0.
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Proof. H} or H} is given by

b b
ch“ijzzcj'u’aj i:l,--~,a—1.
j=t j=1

Now
b b
chl’l'ij = ZCj(#+ai+ﬂj+(alB)ij)
i=1 j=1
' b b
= cptcai+)y ¢ B+ ci(ab);
j=1 j=1

= cpu+co;,

since the last two terms vanish. So H} or H}* is

cputca;=cp+ca 1=1---,a—1
& oy=a, t=1_.-,a—1.

But since >°7_; r; @; = 0 this implies

Hence, we have
Hy=H:0=0 i=1,---;,a-1.

Similarly, we have
Hp=Hf: ;=0 j=1,---,b—1.
Using the no interaction constraint,

Mij — Psj — fit + st =0 V 4,8=1,---,a
vV j,t=1,---,b,

we have

a b
r;
Zr_;'cl(ﬂzj — Usj -Mit+ltst) =0

=1
e b TiC;
ercﬂn Z ,“'sy Z Hzt"',ust—o
=1 j=1 ]1

p—(p+oas)=(u+06)+ (p+as+ B+ (af)s) =0
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Hence we obtain

(@f)i; =0, i=1,---;a—1, j=1,---,b—1. Q.ED.

5. Orthogonality of the Reparameterized Model
Using the reparameterized model (4) we have the following augmented matrix.

P'X,WWXP P'X,W'y

y'WXoP Yy
Now
T.C. c1,R r.1;C (1;R) ® (1;,C)
— _ cR1, cR (R1,)®(1;,C) R®(1,C)
oW WXo = r.C1, (1'R) ® (C1,) r.C (1.R)® C
(R1,)®(C1;) R®(C1,) (R1,))®C ReC
where
R = Diag(ry, - ,7q)
C = Diag(cy,---,¢)-
Thus
r.C 0 0 0
Ry p—— _ 0 c AGRA:I 0 0
PXWWXP=1 ¢ 0 r. AyCA} 0
0 0 0 - (ARA))®(ACA})
which is block diagonal. Also
a -
Yi = 7 Ya- i=1,---,a—1
P'X{W'y = ; .
oYy y.j.-%’fy.b. j=1--b-1
Yij — 2Yib — SYaj + rdyap i= 100,01
L j:]',"'ab_l_
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Letting

.

u = Y- —Y. i=1--,a-1
Tq
C; .

v = y.j.-'g:;y.b. j=1,---,b—1
c; T; 7iCj

W= Y= ZYip — —Yaj + ——Yas
Ch Ta TaCh

we have the matrix to sweep as follows:

r.C 0 0
0 cARA] 0
0 0 T.AbCAz
0 0 0

Y... u/ v/

1= 1, y @ — 1 ) .7 = 17

0 Y.

0 u

0 v

- (ARA) ®(ACA) w
w' y'y

129

Since we have a block diagonal matrix, parameter estimates across blocks are
independent. This implies that the decrease in the residual sum of squares(SSE)
due to adding a block is invariant to what is in the model and that the parameter
estimates of each block are invariant to what is in the model. Thus we obtain the

following result.

Theorem 4.
follows:
L=7.
&z_yz_g Z"l)'
IBJ = y] -7 j=1
(aﬁ)ij - yzy Yi — Y +7
Proof. For u, we have
R 1
b=y
T.C.

For «;, we have

&= (ARA) M,

where

AaRA(II =Ry-1+ 745421 S¢,1~1 s
R,_1 = Diag(ry,---,r4-1) .

The parameter estimates of the reparameterized model are as
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So
(ARAL™ = (Re1+7a8e18, )"
r
= R - 2 R s,1s._R!
a—1 1+Tan,_1R;_118a—1 a—19a a—1*%a—1
-1 7'2 -1 ' -1
= Ra—l - FRa—lsa—ISa—lRa—l
1
-1
= a—1 " ;’1‘1—11:1—1
and
R 1 _ 1
@ = C_(Ra—ll_;la—llz—l)u
1. _ 1
= ZRa—ll u-— c_'r'_-la_llfz_l u.

Then the ith value of the vector & is:

A 1 ~ 1 :
Q; = Ty (yz - %ya..) — C—'f'(y - :—aya..)

= Y. —7. 1=1,---,a—1.

By symmetry, we have

Now for (a8);;,
@B = ((ARAL)®(ACA)) w
= [(ARA) @ (ACA}) ! |w

= [(Ret - et 8 (€7 - it

w1
w1 p—
1g 7 . . 7 1,b—1
n 1 . . )
= -=1 .
1
ey zZ .- - Z
Wa-1,1
| Wa—-1,b—-1




where
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Since the ith block gives

1 ¢o-1

o Wil = o 2.5=1
156

1,017 o 2

w1 "wzl -1 E] 1wz_7
Z : =
w; L -2 b w;
2,b— o1 Wi p-1 1 i
we have
(aB)a Wit — Z] 1| @
. 1 1
= Tl 1 b-1 =
(aB)ip-1 oo Wib—1 — ¢ 2.5=1 Wij ' o1
Wy —w;, —wy,+w.
Wip-1— W;. — Wp_1 + ..
where
_ 1 _ _ _ _
Wwi; = ric; Wij = Yij. — Yib. — Yaj. — Yap
1 b=l
Wi = e 2 Wi = Ui = Uit — Yo — Yap.
7=1
1 a—1
wi = 3 ¢; Wi = Ui =T —Toj. — Tap
%7 =1
1 a-1b6-1
w. = s sz’] =Y. ~Yb — Yo — Yap -
"=l =1
Substitution yields
(aIB)il yzl- - yz - y-l~ +9
: = 7 = 1,
(af)ip-1 Yip-1 —Yi. —Wp-1. +7
Thus we have
(B =ij =Y. —¥; +7.., i=1--,a—1
j = 17 7b -1

Q.E.D.

131
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We shall now show the numerator sum of squares for each hypothesis. Let
N4, Np, and Nyp denote the numerators sums of squares due to A effect, B effect,
and A x B effect, respectively. Due to the orthogonal property of the reparameterized
model, we obtain the following results.

Theorem 5.  The numerator sums of squares for the hypotheses H% or H%", Hg
or Hy, and Hyp are as follows:

a
Ni=Ny =c) ri(@. -7.)°
i=1

b
* *% — — \2
Ng=Ng =r E (7. —7.)
j=1

a b

T m —m . )2

Nap = Z > rici(@i. = Bi. — Y. +7.)°.
i=1 j=1

Proof. If we bring y1, @, B and (af) into the model (4), then the following
reductions in sums of squares occur. The numerator sum of squares for A A is

N3 = R{alu)
a-1 7,

= > @ —7.) (¥ - —Ya-)
=1 ¢

a—1
= ) @ —7.)ric@. —7.)~ (ricF,. —ricg.)]
i=1

a—1 1
- = \2 — — — -
= ZTz'& @ —7..)" — (.. —~ 9. )(ricy,. — riCY..)
i=1

a

7

1l
—

a—1

a ‘
- - — - 32
= Y ric@.-7.) - @ —7.) Y. i@ —7..) + rac. (T —7..)
i=1 i=1
a—1 5 0
= Y rc@i —7.) +7rec @ ~7..)°,
i=1
since the term > 7, ;(7,;. — §..) vanishes. Thus we have

a
Ny =3 rie(. —7.)°
=1

And since H} and H}* are equivalent, N} = N}*.
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In a similar way, we obtain the numerator sum of squares for H} or Hj as

b
R(Blu @) = R(Blp) = rei[@; —7.)°.
j=1

The numerator sum of squares for H,p is given as follows:

Nap = R((eflp,q,p)

a—1b-1 C: 7
— — — — 2
= ZZ Ui — Ui — T + 7.0 Wi5. — Zyiv ~ —yaj +
i=1 j=1 € Ta
a-1b-1
= 3 rici(@ij. — T — U5 +Y.)Ti5. = Uib ~ Jaj. + Tas)
i=1j=1
a—-1b-1 9
= ericj(yzj Y =Y +¥ )
=1 j=1
a—1b-1
- Z Z 7iCi(Tij. — Ui = Ui + .. ) Tip. — Us..)
i=1j=1
a—1b-1 2
— Z Z TZ'Cj(gij. - E - y] + g) (yaj- - y])
i=1 j=1
a—15b-1 9
+D_ 1i¢i(@iy — Voo =T +0.) (Uar — 7).
i=1 j=1
Here,
a—1b-1
> riciGij. — Vi —Tj +5.) Tap — Ti.)
i=1j=1
a—1 b
= Z Z ri¢i(Tij. — Ui — Tj. + U..) Tip. — ¥s..)
i=1 j=1

a—1 a—1
_ — — — \2 — — — — — —
= rics(@p =i — T +7.)° = Y rics(@ip — Vi — T +7.)Tp —7..)
=1 =1

i=1

a—1
— — — — \2 — — — — — —
= - Z Ticb(yib — Y. —Yp + y) + Tacb(yab- ~Yo. —Yp + y)(yb - y) )

since the first term vanishes, and in a similar way we have

a—1b-1

Z Z iCi(Uij. — i = Tj. + U..)(Uaj. — T.5.)
i=1 j=1

133
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b—1
— _ — — \2 — — — — — —
= = 1Ci(Uaj Vo — T +7..)" +7ab@at. = Ta. = Gp + 7)o — T..),
=1
and

a—1b-1

> rici@ij — Ui — U5 +7.) Tap — 7.)

i=1 j=1

a—1 b

= 3> i@y ~ Ui~ +5.)Fap ~ 7.
i=1 j=1

a

= 27U — Vi = Tb +U..) Tap — 7)) + Ta(Tap — Vo = Tb + 7..) Gap. — 7..)

=1

_ _ _ _ 2 _ _ _ N _ _
= 1aco(Jab — o = Fb +T7.)" +7aC6(Tab — T = T + 7)o + T — 27..),
since the first two terms vanish. Thus we have

a b
Nap =3y ricj(Wyj. — Ui — ¥4 +7..)%. Q.E.D.
i=1 j=1

Although N4p does not have a simple algebraic expression for general unequal
cell frequencies, we see that Ngp for the proportional frequency case has the same
algebraic expression as the equal cell frequency case.

We now show the numerator sums of squares for the hypotheses H4 and Hp.

Theorem 6. The numerator sum of squares for the hypothesis Hy4 is:

a b
NA - Z’f‘iC*(Z_ﬂz] -yA)Q
i=1 i=1
where
1 b 1 B 1.8 b
c—*ZZC—, yA—;‘ZZszzJ
j=1Ci "=l j=1
For Hg, we have
b a 9
Np = Zcﬂ"*(zyu —?B)
J=1 =1
where b
1 21 _ 1< _
F= ' ;z, yB=c— chyi]
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Proof. It is well known that for the general unbalanced data,

Ny ~z( ) (zyu 7,)

where )

a hri _ _ 1 b
yr:ZI (E:)Zlyij', hr EZ b zzlhn )
i= Jj= i=

Letting n;; = r; ¢j, we have the following simplification:

1 _ 1_1 »
EZ TZCJ) T ch

j=1
r;
= hy,=b —
j=1C;
and .
7 br.
h, = b
" ; Yt Yh
Then we have ;
— 2=t Zj—l Y35
" r.
Also
by
T b -1
7=1€;
Substitution yields
b a b r 9 a b 9
? — — —
NA—Z” (v -2 W) = e (0~ Ta)
j=1 i=1j=1"" i=1 j=1

where

where

a
1 _ .
. ( ;) ' T = ZZ %yij" QED.
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Thus for the proportional frequency case the numerator sums of squares of the
Table 1 through 3 are as follows:

Table 4.  Sequential sum of squares and Partially sequential sum of squares

Hypotheis Numerator sum of squares
a b
Hy = Hy Ni=Ni=> 3@ -7.) =c Zn
i=1 j=1k=1
a b Ty
HY Ng=33>@,-5.)0=r Zc]
i=1 j=1 k=1
Hyp Nap = Z Z Ticj(—?jij. Y. — Y+ ?)2
i=1 j=1
a b M
Residual — Q(a) =) ) > (wijr — :;.)°
i=1 j=1k=1

Table 5. Marginal means sum of squares

Hypotheis Numerator sum of squares
T5_ |
HA NA—ZTz(Zyz] le:l ZJ) /(2; E)
i=1j= j=
b b e 1
Hp NB=ZCJ‘(Z% ZZ;‘%J) /(325)
Jj=1 =1 =1 j=1 i=1""1
a b
Hup Nap “erzcj yz] : _y] +7. )2
i=1j=1
[/ b '"4_7
Residual Qi) = ZZZ(yz;k sz
=1 j=1k=1

6. Discussion

Proportional cell frequency data is a special case of the general unbalanced data
and allows us to explore the relation between parameter definitions and the analysis
of variance.

Orthogonality occurs when we use the sequential method or the partially se-
quential method given in Table 1 or 2. The sums of squares for A, B, and 4 x B
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interaction for the case of proportional frequencies are obtained using the reparame-
terized model (4). They are given in Table 4, and they add up to the sum of squares
for testing equality of means. These sums of squares are appropriate for testing the
hypotheses, HY*, Hy' (equivlaently H%, Hg) and Hup. This is equivalent to using
the overparameterized model (5) and imposing conditions given in (6) to remove the
. redundancies. The normal equations take the following form:

a b a b
r,c.,u,—}—c.ZTiai—}-?". ZCJ',BJ'-{’ZZT,'CJ' (Ozﬂ)ij = Y...
=1

i=1 i=1 j=1
b b
ricp+ricai+r Yy c; B +riY ci(aBij=vy. i=1,---,a
i=1 i=1

a a
T.Cj i+ C; Zriai+r.cjﬂjﬁ—cj2ri(a,3)ij =y; J=1--,b
=1 i=1

ricipt+riciai+rici B +rici(af)y =y i=1,,a

With the side conditions, it can be shown that they give the same estimates as those
given in Theorem 4 with ¢ = a and j = b included and give the same analysis as in
Table 5.

Nonorthogonality occurs when we use the marginal means analysis. The sums
of squares can be obtained using the marginal means parameters,

o = pp—f. t=1,---,a—1

Bi = fg;—p. J=1,---,b-1
and applying the computing procedure in Table 3 to this reparameterized model.

This is equivalent to using the overparameterized model (5) and imposing side con-
ditions,

<o

a b
ZC”:O, Zﬁjzoa Z(aﬂ)ij:07 i=1,---,a-1,
i=1 =

j=1
a

Z(Oz,@)ijso, j=1,--',b,

i=1
to remove the redundancies. These sums of squares are given in Table 5, which
have been derived directly from the general results of the cell means model with
unbalanced data. The main effects sums of squares differ from those of orthogonal
case and the main effects and their interaction sums of squares do not add up to the
sum of squares for testing equality of means.
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Thus we see that orthogonality occurs when the sequential sum of squares or
the partially sequential sum of squares is used and that nonorthogonality occurs
when the marginal means sum of squares is used. It is often conceived that for the
proportional frequency case the same analysis can be carried out as in the usual equal
cell frequency case, but this is not exactly true when the marginal means analysis
is used. We should be aware of what hypotheses being tested when we intetpret
computer outputs since the hypotheses associated with the sums of squares depend
on how the parameters are defined or what side conditions are imposed.

10.
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