DOI QR코드

DOI QR Code

A four-node degenerated shell element with drilling degrees of freedom

  • Kim, Ji-Hun (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Byung-Chai (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 1998.12.25

Abstract

A new four-node degenerated shell element with drilling degrees of freedom (DOF) is proposed. Allman-type displacement approximation is incorporated into the formulation of degenerated shell elements. The approximation improves in-plane performance and eliminates singularities of system matrices resulted from DOF deficiency. Transverse shear locking is circumvented by introducing assumed covariant shear strains. Two kinds of penalty energy are considered in the formulation for the purpose of suppressing spurious modes and representing true drilling rotations. The proposed element can be applied to almost all kinds of shell problems including composite laminated shell structures and folded shell structures. Numerical examples show that the element is of good accuracy and of reasonably fast convergence rate.

Keywords

References

  1. Ahmad, S., Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Methods Eng., 2, 419-451. https://doi.org/10.1002/nme.1620020310
  2. Allman, D.J. (1984), "A compatible triangular element including vertex rotations for plane elasticity analysis", Comp. Struct., 19, 1-8. https://doi.org/10.1016/0045-7949(84)90197-4
  3. Aminpour, M.A. (1992), "An assumed-stress hybrid 4-node shell element with drilling degrees of free dom", Int. J. Numer. Methods Eng., 33, 19-38. https://doi.org/10.1002/nme.1620330103
  4. Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed inter polation of tensorial components", Int. J. Numer. Methods Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
  5. Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for 9-node Lagrange shell element", Int. J. Numer. Methods Eng., 28, 385-414. https://doi.org/10.1002/nme.1620280210
  6. Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Structural Engineering and Mechanics, An Int. J., 2(1), 17-34.
  7. Choi, C.K. and Lee, W.H. (1995), "Transition membrane elements with drilling freedom for local mesh refinements", Structural Engineering and Mechanics, An Int. J., 3(1), 75-89.
  8. Choi, C.K., Chung, K.Y. and Lee, N.H. (1996), "Three dimensional non-conforming 8-node solid elements with rotational degress of freedom", Structural Engineering and Mechanics, An Int. J., 4(5), 569-586.
  9. Cook, R.D. (1994), "Four-node 'flat' shell element: Drilling degrees of freedom, membrane-bending coupling, warped geometry, and behavior", Comput. Struct., 50(4), 549-555. https://doi.org/10.1016/0045-7949(94)90025-6
  10. Fam, A.R.M. and Turkstra, C. (1976), "Model study of horizontally curved box girder", J. Engng. Struct. Div., ASCE, 102(ST5), 1097-1108.
  11. Frey, F. (1989), "Shell finite elements with six degress of freedom per node", Analytical and. Computational Models of Shells, ASME, CED, 3, 291-316.
  12. Flugge, W. (1973), Stresses in Shells, Springer, Berlin.
  13. Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Numer. Methods Eng., 22, 73-92. https://doi.org/10.1002/nme.1620220107
  14. Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305
  15. Jang, J. and Pinskiy, P.M. (1987), "An assumed covariant based 9-node shell element", Int. J. Numer. Methods Eng., 24, 2389-2411. https://doi.org/10.1002/nme.1620241211
  16. Kanok-Nukulchai, W. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer. Methods Eng., 14, 179-200. https://doi.org/10.1002/nme.1620140204
  17. MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elements. Anal. Des., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
  18. MacNeal, R.H. and Harder, R.L. (1988), "A refined four-noded membrane element with rotational degress of freedom, Comp. Struct., 28, 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
  19. MacNeal, R.H. (1994), Finite Elements: Their Design and Performance, Marcel Dekker, New York.
  20. Panda, S. and Natarajan, R. (1981), "Analysis of laminated composite shell structures by finite element method", Comp. Struct., 14, 225-230. https://doi.org/10.1016/0045-7949(81)90008-0
  21. Park, K.C. and Stanley, G.M. (1986), "A curved C shell element based on assumed natural-coordinate strains", J. of Applied Mechanics, ASME, 53, 278-290. https://doi.org/10.1115/1.3171752
  22. Reddy, J.N. (1992), Energy and Variational Methods in Applied Mechanics, John Wiley & Sons, New York.
  23. Sze, K.Y. and Ghali, A. (1993), "A hybrid brick element with ratational degrees of freedom", Comput. Mech., 12, 147-163. https://doi.org/10.1007/BF00371990
  24. Sze, K.Y., Sim, Y.S. and Soh, A.K. (1997), "A hybrid stress quadrilateral shell element with full ratational D.O.F.s", Int. J. Numer. Methods Eng., 40, 1785-1800. https://doi.org/10.1002/(SICI)1097-0207(19970530)40:10<1785::AID-NME137>3.0.CO;2-H
  25. Taylor, R.L., Simo, J.C., Zienkiewicz, O.C. and Chan, A.C. (1986), "The patch test: A condition for assessing finite element convergence", Int. J. Numer. Methods Eng., 22, 39-62. https://doi.org/10.1002/nme.1620220105
  26. Yunus, S.M., Pawlak, T.P. and Cook, R.D. (1991), "Solid elements with rotational degrees of free dom: Part 1-Hexahedron elements", Int. J. Numer. Methods Eng., 31, 573-592. https://doi.org/10.1002/nme.1620310310
  27. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Methods Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211

Cited by

  1. Improved Bilinear Degenerated Shell Element vol.12, pp.02, 2015, https://doi.org/10.1142/S0219876215500048