References
- Babuska, I. (1971), "Error bounds for finite element method", Numer. Math., 16, 323-333.
- Belytschko, T. and Bachrach, W.E. (1986), "Efficient implementation of quadrilateral with high coarsemesh accuracy", Comput. Meths. Appl. Mech. Engrg., 54, 279-301. https://doi.org/10.1016/0045-7825(86)90107-6
- Belytschko, T. and Bindeman, L.P. (1991), "Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems", Comput. Meths. Appl. Mech. Engrg., 88, 311-340. https://doi.org/10.1016/0045-7825(91)90093-L
- Brezzi, F. (1974), "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers", RAIRO Ser. Rouge Anal. Numer., R-2, 129-151.
- Doherty, W.P., Wilson, E.L. and Taylor, R.L. (1969), "Stress analysis of axisymmetric solids utilizing higher order quadrilateral finite elements", SESM Report No. 69-3, Department of Civil Engineering, University of California, Berkeley, CA.
- Hughes, T.J.R. (1977), "Equivalence of finite elements for nearly incompressible elasticity", J. Appl. Mech., 44, 181-183. https://doi.org/10.1115/1.3423994
- Hughes, T.J.R. (1987), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood cliff, NJ.
- Hughes, T.J.R. and Franca, L.P. (1987), "A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces", Comput. Meths. Appl. Mech. Engrg., 65, 85-96. https://doi.org/10.1016/0045-7825(87)90184-8
- Lee, R.L., Gresho, P.M. and Sani, R.L. (1979), "Smoothing techniques for certain primitive variable solutions of the Navier-Stokes equations", Internat. J. Numer. Meths. Engrg., 14, 1785-1804. https://doi.org/10.1002/nme.1620141204
- MacNeal, R.H. (1993), Finite Elements: Their Design and Performance, Marcel Dekker Inc., New York.
- Malkus, D.S. and Hughes, T.J.R. (1978), "Mixed finite element methods-reduced and selective integration technique: a unification of concepts", Comput. Meths. Appl. Mech. Engrg., 15, 63-81. https://doi.org/10.1016/0045-7825(78)90005-1
- Oden, J.T. and Carey, G. (1983), Finite Elements: Mathematical Aspects, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Oden, J.T., Kikuchi, N. and Song, Y.J. (1982), "Penalty-finite element methods for the analysis of Stokesian Flows", Comput. Meths. Appl. Mech. Engrg., 31, 297-329. https://doi.org/10.1016/0045-7825(82)90010-X
- Pian, T.H.H. and Sumihara, K. (1984), "Rational approach for assumed stress finite elements", Internat. J. Numer. Meths. Engrg., 20, 1685-1695. https://doi.org/10.1002/nme.1620200911
- Pitkaranta, J. and Saarinen, T. (1985), "A multigrid version of a simple finite element method for the Stokes problem", Math. Comp., 45, 1-14. https://doi.org/10.1090/S0025-5718-1985-0790640-2
- Pitkaranta, J. and Stenberg, R. (1984), "Error bounds for the approximation of the Stokes problem using bilinear/constant elements on irregular quadrilateral meshes", Report-MAT-A222, Helsinki University of Technology, Institute of Mathematics, Finland.
- Sani, R.L., Gresho, P.M., Lee, R.L., Griffiths, D.F. and Engleman, M. (1981), "The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navior-Stokes equations: Part I and Part II", Internat. J. Numer. Meths. in Fluids, 1, 17-43 and 171-204. https://doi.org/10.1002/fld.1650010104
- Silvester, D.J. and Kechkar, N. (1990), "Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem", Comput. Meths. Appl. Mech. Engrg., 79, 71-86. https://doi.org/10.1016/0045-7825(90)90095-4
- Simo, J.C. and Rifai, M.S. (1990), "A class of mixed assumed strain methods and the method of incompressible modes", Internat. J. Numer. Meths. Engrg., 29, 1595-1638. https://doi.org/10.1002/nme.1620290802
-
Stolarski, H. and Belytschko, T. (1983), "Shear and membrane locking in curved
$C^{\circ}$ elements", Comput. Meths. Appl. Mech. Engrg., 41, 279-296. https://doi.org/10.1016/0045-7825(83)90010-5 - Taylor, R.L., Beresford, P.J. and Wilson, E.L. (1976), "A non-conforming element for stress analysis", Internat. J. Numer. Meths. Engrg., 10, 1211-1219. https://doi.org/10.1002/nme.1620100602
- Taylor, C. and Hood, P. (1973), "A numerical solution of the Navior-Stokes equations using FEM techniques", Computers and Fluids, 1, 73-100. https://doi.org/10.1016/0045-7930(73)90027-3
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity 3rd ed., McGraw-Hill book company, 41-46.
- Xue, W.M., Karlovitz, L.A. and Atluri, S.N. (1985), "On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner? variational principle", Intl. J. Solids Structures, 21, 97-116. https://doi.org/10.1016/0020-7683(85)90107-6