Abstract
Exercise of complete control on all aspects of any manufacturing / fabrication process is very difficult, leading to uncertainties in the material properties and geometric dimensions of structural components. This is especially true for laminated composites because of the large number of parameters associated with its fabrication. When the basic parameters like elastic modulus, density and Poisson's ratio are random, the derived response characteristics such as deflections, natural frequencies, buckling loads, stresses and strains are also random, being functions of the basic random system parameters. In this study the basic elastic properties of a composite lamina are assumed to be independent random variables. Perturbation formulation is used to model the random parameters assuming the dispersions small compared to the mean values. The system equations are analyzed to obtain the mean and the variance of the plate natural frequencies. Several application problems of free vibration analysis of composite plates, employing the proposed method are discussed. The analysis indicates that, at times it may be important to include the effect of randomness in material properties of composite laminates.