References
- Ambartsumyan, S.A. (1960), Theory fo Anisotropic Plates, Technomic.
- Averill, R.C. and Reddy, J.N. (1992), "An assessment of four-noded plate finite elements based on a generalized third-order theory", International Journal for Numerical Methods in Engineering, 33, 1553-1572. https://doi.org/10.1002/nme.1620330802
- Basset, A.B. (1890), "On the extension and flexure of cylindracal and spherical thin elastic shells", Phil. Trans. Royal Soc. Ser A, 181(6), 433-480. https://doi.org/10.1098/rsta.1890.0007
- Bert, C.W. and Mayberry, B.L. (1969), "Free vibration of unsymmetrically laminated anisotropic plats with clamped edges", Journal of Composite Materials, 3, 282-293. https://doi.org/10.1177/002199836900300207
- Bert, C.W. (1973), "Simplified analysis of static shear factors for beams of nonhomogeneous cross section", Journal of composite Materials, 7, 525-529. https://doi.org/10.1177/002199837300700410
- Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation of antisymmetric angle-ply laminated rectangular plates", International Journal of Solids and Structures, 14, 465-473. https://doi.org/10.1016/0020-7683(78)90011-2
- Bhimaraddi, A. and Stevens, L.K. (1984), A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates", Journal of Applied Mechanics, Trans. ASME, 51, 195-198. https://doi.org/10.1115/1.3167569
- Bielski, W. and Telega, J.J. (1988), "On existence of solutions for geometrically nonlinear shells and plates", Zeitschrift fur Angewandte Mathematik and Mechanik, 68(4), 155-157. https://doi.org/10.1002/zamm.19880680312
- Bose, P. (1995), "An evaluation of classical and refined equivalent-single-layer laminate theories", M.S. Thesis, Virginia Polytechnic Institute and State University, Blackburg, VA.
- Brogan, W.L. (1985), Modern Control Theory, Pretice-Hall, Englewood Cliffs, New Jersey.
- Chatterjee, S.N. and Kulkarni, S.V. (1979), "Shear correction factors for laminated plates", AIAA Journal, 17(5), 498-499. https://doi.org/10.2514/3.61160
- Chaudhuri, R.A. (1989), "On boundary-discontinuous double fourier series solution to a system of coupled pdes", International Journal of Engineering Science, 27, 1005-1022. https://doi.org/10.1016/0020-7225(89)90080-3
- Chaudhuri, R.A. and Kabir, Humayun R.H. (1992), "Influence of lamination and boundary constraint on the deformation of moderately thick cross-ply rectangular plates", Journal of Composite Materials, 26(1), 51-77. https://doi.org/10.1177/002199839202600104
- Chen, C.T. (1984), Linear System Theory and Design, Holt, Rinehart and Winston.
- Cooke, D.W. and Levinson, M. (1983), "Thick rectangular plates-2: The generalized levy solution", Intl. J. Mech. Sci., 25(3), 207-215. https://doi.org/10.1016/0020-7403(83)90094-2
- Di Sciuva, M. (1986), "Bending, vibration and buckling of simply supported thick multi-layered orthotropic plate: An evaluation of a new displacement model", Journal of Sound and Vibration, 105(3), 425-442. https://doi.org/10.1016/0022-460X(86)90169-0
- Dong, S.B., Pister, K.S. and Taylor, R.L. (1962), "On the theory of laminated anisotropic shells and plates", Journal of Aerospace Sciences, 29, 969-975. https://doi.org/10.2514/8.9668
- Doong, J.L. (1987), "Vibration and stability of an initially stressed thick plate according to a high-order deformation theory", Journal of Sound and Vibration, 113(3), 425-440. https://doi.org/10.1016/S0022-460X(87)80131-1
- Durocher, L.L. and Soleck, R. (1975), "Steady-state vibrations and bending of transversely isotropic three-layer plates", In Developments in Mechanics, Vol. 8, Porc. 14th Midwestern Mech. Conf., 103-124.
- Engblom, J.J. and Ochao, O.O. (1986), "Finite element formulation including interlaminar stress calculations", Computers and Structures, 23(2), 241-249. https://doi.org/10.1016/0045-7949(86)90216-6
- Epstein, M. and Glockner, P.G. (1977), "Nonlinear analysis of multilayered shells", International Journal of Solids and Structures, 13, 1081-1089. https://doi.org/10.1016/0020-7683(77)90078-6
- Epstein, M. and Huttelmaier, H.P. (1983), "A finite element formulation for multilayered and thick plates", Computers and Structures, 16(5), 645-650. https://doi.org/10.1016/0045-7949(83)90113-X
- Franklin, J.N. (1968), Matrix Theory, Prentice-Hall, Englewood Cliffs, New Jersey.
- Gol'denveizer, A.L. (1958), "On reissner's theory of bending of plates", Izu. Akad Nauk SSSR, 5, 69-77.
- Gol'denveizer, A.L. (1962), "Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity", Prikl. Math. Mech., 26(4), 668-686.
- Hencky, H. (1947), "Uber die berrucksichtigung der schubverzerrung in ebenen platten", Ing. Arch., 16, 72-76. https://doi.org/10.1007/BF00534518
- Hildebrand, F.B., Reissner, E. and Thomas, G.B. (1949), "Notes on the foundations of the theory of small displacements of orthotropic shells", Technical Report1833, NACA, March.
- Hinrichsen, R.L. and Palazotto, A.N. (1986), "Nonlinear finite element analysis of thick composite plates using cubic spline functions", AIAA Journal, 24(11), 1836-1842. https://doi.org/10.2514/3.9532
- Hinton, E. and Bicanic, N. (1979), "A comparison of lagrangian and serendipity mindlin plate elements for free vibration analysis", Computers and Structures, 10, 483-493. https://doi.org/10.1016/0045-7949(79)90023-3
- Huang, H.C. and Hinton, E. (1984), "A nine node lagranian mindlin plate element with enhanced shear interpolation", Engrg. Computers, 1, 369-379. https://doi.org/10.1108/eb023593
- Huffington, N.J. Jr. (1963), "Response of elastic columns of axial pulse loading", AIAA Journal, 1(9), 2099-2104. https://doi.org/10.2514/3.2000
- Hughes, T.J.R. and Cohen, M. (1978), "The 'heterosis' finite element for plate bending", Computers and Structures, 9, 445-450. https://doi.org/10.1016/0045-7949(78)90041-X
- Hughes, T.J.R., Taylor, R.L.and Kanoknukulchai, W. (1977), "A simple and efficient finite element for plate bending", International Journal for Numerical Methods in Engineering, 11, 1529-1543. https://doi.org/10.1002/nme.1620111005
- Jemeilita, G. (1975), "Techniczna teoria plyt sredniej grubosci (technical theory of plates with moderate thickness)", Rozprawy Inzynierskie (Engineering Transactions), Polska Akademia Nauk, 23(3), 483-499.
- Jones, A.T. (1970), "Exact frequencies for cross-ply laminates", Journal of Composite Materials, 4, 476-491. https://doi.org/10.1177/002199837000400404
- Kant, T. (1982), "Numerical analysis of thick plates", Comp. Methods Appl. Mech. Engrg., 31(1), 1-18. https://doi.org/10.1016/0045-7825(82)90043-3
- Kant, T. and Pandya, B.N. (1988), "A simple finite element formulation of a higher order theory for unsymmetrically laminated composite plates", Comp. Struc., 9(3), 215-246. https://doi.org/10.1016/0263-8223(88)90015-3
- Khdeir, A.A. (1988), "Free vibration and buckling of symmetric cross-ply laminated plates by an exact method", Journal of Sound and Vibration, 126(3), 447-461. https://doi.org/10.1016/0022-460X(88)90223-4
- Khdeir, A.A. and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory-part 2. bucking and free vibration", Comp. Struc., 9, 259-277. https://doi.org/10.1016/0263-8223(88)90048-7
- Khdeir, A.A. and Reddy, J.N. (1988), "Dynamic response of antisymmetric angle-ply laminated plates subjected to arbitrary loading", Journal of Sound and Vibration, 126(3), 437-445. https://doi.org/10.1016/0022-460X(88)90222-2
- Khdeir, A.A. and Reddy, J.N. (1989), "On theforced motions of the antisymmetric cross-ply laminated plates", Intl. J. Mech. Sci., 31(7), 499-510. https://doi.org/10.1016/0020-7403(89)90099-4
- Khdeir, A.A. and Reddy, J.N. (1989), "Exact solutions for the transient response of symmetric cross-ply laminates using a higher-order plate theory", Comp. Sci. Tech., 34, 205-224. https://doi.org/10.1016/0266-3538(89)90029-8
- Khdeir, A.A., Reddy, J.N. and Librescu, L. (1987), "Analytical solution of a refined shear deformation theory for rectangular composte plates", International Journal of Solids and Structures, 23(10), 1447-1463. https://doi.org/10.1016/0020-7683(87)90009-6
- Kromm, A. (1953), "Verallgeneinerte theorie der plattenstatik", Ing. Arch., 21, 266-286. https://doi.org/10.1007/BF00538133
- Kromm, A. (1955), "Uber die randquerkrafte bei gestutzten platten", Zeitschrift fur Angewandte Mathematik and Mechanik, 35, 231-242. https://doi.org/10.1002/zamm.19550350604
- Lee, C.W. (1967), "Three-dimensional solution for simply-supported thick rectangular plates", Nuclear Engineering and Design, 6, 155-162. https://doi.org/10.1016/0029-5493(67)90126-4
- Lee, Y.C. and Reismann, H. (1969), "Dynamics of rectangular plates", International Journal of Engineering Science, 7, 93-113. https://doi.org/10.1016/0020-7225(69)90025-1
- Lekhnitskii, S.G. (1981), Anisotropic Plates, English Translation, Mir Publishers (First Edition in Russian, 1950).
- Levinson, M. (1980), "An accurate, simple theory of the statics and dynamics of elastic plates", Mech. Res. Comm., 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
- Levinson, M. and Cooke, D.W. (1983), "Thick rectangular plates-1: The generalized navier solution", Intl. J. Mech. Sci., 25(3), 199-205. https://doi.org/10.1016/0020-7403(83)90093-0
- Lewinski, T. (1986), "A note on recent developments in the theory of elastic plates with moderate thickness", Rozprawy Inz., 34(4), 531-542.
- Librescu, L. (1975), Electrostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures, Nordhoff, Leyden, Netherlands.
- Librescu, L. (1975), "Improved linear theory of elastic anisotropic multilayered shells, part 1", Mekhanika Polimerov, (6), 1038-1050.
- Librescu, L. (1976), "Improved linear theory of elastic anisotropic multilayered shells, part 2", Mekhanika Polimerov, (1), 100-109.
- Librescu, L. and Khdeir, A.A. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory-part 1. stress and displacement", Comp. Struc., 9, 189-213. https://doi.org/10.1016/0263-8223(88)90014-1
- Liou, W.J. and Sun, C.T. (1987), "A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates", Computers and Structures, 25(2), 241-249. https://doi.org/10.1016/0045-7949(87)90147-7
- Lo, K.H.,Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation, part 1: Homogeneous plates", Journal of Applied Mechnics, 44(4), 663-668. https://doi.org/10.1115/1.3424154
- Lo, K.H.;Christensen, R.M.;Wu, E.M. (1977), "A high-order of plate deformation, part 2: Laminated plates", Journal OF Applied Mechnics, 44(4), 669-676. https://doi.org/10.1115/1.3424155
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1978), "Stress solution determination for high order plate theory", Interntional Journal of Solids and Structures, 14, 655-662. https://doi.org/10.1016/0020-7683(78)90004-5
- Mau, S.T. (1973), "A refined laminated plate theory", Jouranl of Applied Mechanics, Trans. ASME, 40(2), 606-607. https://doi.org/10.1115/1.3423032
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", Journal of Applied Mechanics, 18, 31-38.
- Murakami, H. (1986), "Laminated composite plate theory with imporve in-plane responses", Journal of Applied Mechanics, Trans. ASME, 35(3), 661-666.
- Murty, A.V.Krishna (1977), "Higher order theory for vibration of thick plates", AIAA Journal, 15(12), 1823-1824. https://doi.org/10.2514/3.7490
- Murty, A.V. Krishna (1977), "Flexure of composite plates", Composite Structures, 7(3), 161-177. https://doi.org/10.1016/0045-7949(77)90033-5
- Murty, A.V. Krishna (1986), "Toward a consistent plate theory", AIAA Journal, 24(6), 1047-1048. https://doi.org/10.2514/3.9388
- Murty, M.V.V. (1981), "An improved transverse shear deformation theory for laminated anisotropic plates", Technical Report 1903, NASA, Nov.
- Nelson, R.B. and Lorch, D.R. (1974), "A refined theory of laminated orthotropic plates", Journal of Applied Mechanics, 41, 171-183.
- Noor, A.K. and Scott, W. (1989), "Assessment of shear deformation theories for multilayered composite plates", Applied Mechanics Reviews, 42(1), 1-12. https://doi.org/10.1115/1.3152418
- Noor, A.K. and Scott Burton, W. (1989), "Three-dimensional solutions for anti symmetrically laminated anisotropic plates", Journal of Applied Mechanics, Trans. ASME, pages 1-7.
- Nosier, A. and Reddy, J.N. (1992), "Vibration and stability analyses of cross-ply laminated circular cylindrical shells", Journal of Sound and Vibration, 157(1), 139-159. https://doi.org/10.1016/0022-460X(92)90571-E
- Owen, D.R.J. and Li, Z.H. (1987), "A refined analysis of laminated plates by finite element displacement methods-1. fundamentals of static analysis", Computers and Structures, 26(6), 907-914. https://doi.org/10.1016/0045-7949(87)90107-6
- Owen, D.R.J. and Li, Z.H. (1987), "A refined analysis of laminated plates by finite element displacement methods-2. vibration and stability", Computers and Structures, 26(6), 915-923. https://doi.org/10.1016/0045-7949(87)90108-8
- Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", Journal of Composite Materials, 4, 20-34. https://doi.org/10.1177/002199837000400102
- Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", Journal of Composite Materials, 3, 398-411. https://doi.org/10.1177/002199836900300304
- Pagano, N.J. (1978), "Stress fields in composite laminates", International Journal of Solids and Structures, 14(4), 385-400. https://doi.org/10.1016/0020-7683(78)90020-3
- Pagano, N.J. and Hatfield, S.J. (1972), "Elastic behavior of multilayered bidirectional composites", AIAA Journal, 10, 931-933. https://doi.org/10.2514/3.50249
- Panc, V. (1964), "Verscharfte theorie der elastichen platte", Ing. Arch., 33, 351-371. https://doi.org/10.1007/BF00531894
- Panc, V. (1975), Theories of Elastic Plates, Nordhoff, Leyden, Netherlands.
- Phan, N.D. and Reddy, J.N. (1985), "Analysis of laminated composite mplates using a higher-order shear deformation theory", International Journal for Numerical Methods in Engineering, 12, 2201-2219.
- Pryor, C.W. and Barker, R.M. (1971), "A finite element analysis including transverse shear effects for applications to laminated plates", AIAA Journal, 9, 912-917. https://doi.org/10.2514/3.6295
- Pryor, C.W., Barker, R.M. and Frederick, D. (1970), "Finite element bending analysis of reissner plates", ASCE J. Engrg. Mech., 96(EM6), 967-981.
- Putcha, N.S. and Reddy, J.N. (1982), "Three dimensional finite element analysis of layered composite plates", In Laurensom, R. M. and Yuceoglu, U. editors, 1982 Advances in Aerospace Structures and Materials, pages 29-35. ASME, AD-03, Nov.
- Putcha, N.S. and Reddy, J.N. (1986), "A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates", Computers and Structures, 22(2), 529-538. https://doi.org/10.1016/0045-7949(86)90002-7
- Putcha, N.S. and Reddy, J.N. (1986), "Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory", Journal of Sound and Vibration, 104(2), 285-300. https://doi.org/10.1016/0022-460X(86)90269-5
- Reddy, J.N. (1979), "Simple finite elements with relaxed continuity for nonlinear analysis of plates, In Proc. 3rd International Conference on Finite Element Methods, Australia, pages 265-281, July.
- Reddy, J.N. (1980), "A penalty plate-bending element for the analysis of laminated anisotropic composite plates", International Journal for Numerical Methods in Engineering, 15, 1187-1206. https://doi.org/10.1002/nme.1620150807
- Reddy, J.N. (1983), "An accurate prediction of natural frequencies of laminated plates by a higher-order theory", In Advances in Aerospace Structures, Materials and Dynamics-A Symposium on Composites, Boston, AD-06, 157-162. ASME.
- Reddy, J.N. (1983), "Geometrically nonlinear transient analysis of laminated composite plates", AIAA Journal, 21(4), 621-629. https://doi.org/10.2514/3.8122
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", Journal of Applied Mechanics, Trans. ASME, 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1984), "A refined nonliner theory of plates with transverse shear deformation", International Journal of Solids and Structures, 20(9/10), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8
- Reddy, J.N. (1984), Energy and Variational Methods in Applied Mechanics, John Wiley and Sons.
- Reddy, J.N. (1985), "A review of the literature on finite element modeling of laminated composite plates", Shock and Vibration Digest, 17(4), 3-8.
- Reddy, J.N. (1987), "A small strain and moderate rotation theory of laminated anisotropic plates, Journal of Applied Mechanics, Trans. ASME, 54, 623-626. https://doi.org/10.1115/1.3173079
- Reddy, J.N. (1989), "On refined computational models of composite laminates", International Journal for Numerical Methods in Engineering, 27, 361-382. https://doi.org/10.1002/nme.1620270210
- Reddy, J.N. (1990), "A review of refined theories of laminated composite plates", The Shock and Vibration Digest, 22(7), 3-17.
- Reddy, J.N. (1990), "A general nonlinear third-order theory of plates with moderate thickness", International Journal of Non-linear Mechanics, 25(6), 677-686. https://doi.org/10.1016/0020-7462(90)90006-U
- Reddy, J.N. (1997), Mechanics of Laminated Plates: Theory and Analysis, CRC Press, Boca Raton, FL.
- Reddy, J.N. (1998), Thery and Analysis of Elastic Plates, Taylor & Francis.
- Reddy, J.N. and Chao, C.W. (1981), "A comparison of closed form and finite element solutions of thick laminated anisotropic rectangular plates", Nuclear Engineering Design, 64, 153-167. https://doi.org/10.1016/0029-5493(81)90001-7
- Reddy, J.N. and Khdeir, A.A. (1989), "Buckling and vibration of laminated composte plates using various plate theories", AIAA Journal, 27(12)1, 1808-1817. https://doi.org/10.2514/3.10338
- Reddy, J.N., Khdeir, A.A. and Librescu, L. (1987), "Levy type solutions for symmetrically laminated rectangular plates using a first-order shear deformation theory", Journal of Applied Mechanics, Trans. ASME, 54(3), 740-742. https://doi.org/10.1115/1.3173104
- Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic, and laminated plates according to a higher-order shear deformationtheory", Journal of Sound and Vibration, 98, 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
- Rehfield, L.W. and Murthy, P.L.N. (1982), "Toward a new engineering theory of bending: Fundamentals", AIAA Journal, 20(5), 693-699. https://doi.org/10.2514/3.7938
- Rehfield, L.W. and Valisetty, R.R. (1983), "A comprehensive theory for planar bending of composite laminates", Computers and Structures, 15, 441-447.
- Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Physics, 23(4), 184-191. https://doi.org/10.1002/sapm1944231184
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", Journal of Applied Mechanics, Trans. ASME, 12, 69-77.
- Reissner, E. (1947), "On bending of elastic plates", Quart. Appl. Math., 5(1), 55-68.
- Reissner, E. (1961), "A consistent treatment of transverse shear deformations in laminated anisotropic plates", AIAA Journal, 10(5), 716-718.
- Reissner, E. (1984), "On a certain mixed variational theorem and a porposed application", International Journal for Numerical Methods in Engineering, 20, 1366-1368. https://doi.org/10.1002/nme.1620200714
- Reissner, E. (1986), "On a mixed variational theorem and on shear deformable plate theory", International Journal for Numerical Methods in Engineering, 23, 193-198. https://doi.org/10.1002/nme.1620230203
- Reissner, E. and Stavsky, Y. (1961), "Bending and stretching of certain types of heterogeneous aelotropic elastic plates", Journal of Applied Mechanics, 28, 402-408. https://doi.org/10.1115/1.3641719
- Ren, J.G. (1987), "Bending of simply-supported antisymmetrically laminated rectangular plate under transverse loading", Com. Sci. Tech., 28(3), 231-243. https://doi.org/10.1016/0266-3538(87)90004-2
- Ren, J.G. and Hinton, E. (1986), "The finite element analysis of homogeneous and laminated composite plates using a simple higher order theory", Comm. Appl. Numer. Methods, 2(2), 217-228. https://doi.org/10.1002/cnm.1630020214
- Salerno, V.L. and Goldberg, M.A. (1960), "Effect of shear deformation on the bending of rectangular plates", Journal of Applied Mechanics, Trans ASME, 27(1), 54-58. https://doi.org/10.1115/1.3643934
- Savoia, M. and Reddy, J.N. (1992), "A variational approach to three-dimensional elasticity solutions of laminated composite plates", J. Appl. Mech., 59(2), S166-S175. https://doi.org/10.1115/1.2899483
- Schmidt, R. (1977), "A refined nonlinear theory of plates with transverse shear deformation", Jnl. Indus. Math. Soc., 27(1), 23-38.
- Sciuva, M.Di (1984), "An improved shear-deformation theory for moderately thick multilayered anisotropic plates and shells", Journal of Applied Mechanics, Trans. ASME, 54, 589-596.
- Seide, P. (1975), Small Elastic Deformations of Thin Shells, Nordhoff, Leyden, Netherlands.
- Seide, P. (1980), "An improved approximate theory for the bending of laminated plates", Mechanics Today, 5, 451-466.
- Srinivas, S. (1973), "A refined analysis of composite laminates", Journal of Sound and Vibration, 30, 495-507. https://doi.org/10.1016/S0022-460X(73)80170-1
- Srinivas, S., Joga Rao, C.V. and Rao, A.K. (1970), "An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates", Journal of Sound and Vibration, 12, 187-199. https://doi.org/10.1016/0022-460X(70)90089-1
- Srinivas, S. and Rao, A.K. (1970), "Bending, vibrations and buckling of simply supported thick orthotropic rectangular plates and laminates", International Journal of Solids and Structures, 6, 1464-1481.
- Srinivas, S.. Rao, A.K. and Joga Rao, C.V. (1966), "Flexure of simply supported thick homogeneous and laminated rectangular plates", Zeitschrift fut Angewandte Mathematik and Mechanik, 49, 449-458.
- Stavsky, Y. (1960), On the Theory of Hetergeneous Anisotropic Plates, PhD thesis, MIT.
- Stavsky, Y. (1961), "Bending and stretching of laminated aelotropic plates", Proc. ASCE, Jnl. Engg. Mech. Div., EM6, 87.
- Sun, C.T. (1971), "Theory of laminated plates", Journal of Applied Mechanics, Trans. ASME, 38, 231-238. https://doi.org/10.1115/1.3408748
- Sun, C.T. and Cheng, N.C. (1972), "On the governing equations for a laminated plate", Journal of Sound and Vibration, 21(3), 307-316. https://doi.org/10.1016/0022-460X(72)90815-2
- Sun, C.T. and Whitney, J.M. (1973), "On theories for the dynamic response of laminated plates", AIAA Journal, 11(2), 178-183. https://doi.org/10.2514/3.50448
- Stein, M. (1986), "Nonlinear theory for plates and shells including the effects of transverse shearing", AIAA Journal, 24(9), 1537-1544. https://doi.org/10.2514/3.9477
- Tessler, A. (1991), "A higher-order plate theory with ideal finite element suitability", Comp. Methods Appl. Mech. Eng., 85.
- Tessler, A. and Saether, E. (1991), "A computationally viable higher-order plate theory for laminated composite plates", International Journal for Numerical Methods in Engineering, 31, 1069-1086. https://doi.org/10.1002/nme.1620310604
- Timoshenko, S.P. and Woinowsky-Kreiger, S. (1961), Theory of Plates and Shells, McGraw-Hill, New York, 1961.
- Toledano, A. and Murakami, H. (1987), "A composite plate theory for arbitrary laminate configurations", Journal of Applied Mechanics, 54, 181-189. https://doi.org/10.1115/1.3172955
- Uflyand, Y.S. (1948), "The propagation of waves in the transverse vibrations of bars and plates", Izv. Akad. Nauk SSSR, Prikladnaya Matematika i Mekhanika, 12, 287-300.
- Vlasov, B.F. (1957), "On one case of bending of rectangular thick plates", Vestnik Moskovskogo Universitieta, 2, 25-34.
- Vlasov, B.F. (1958), "Ob uravneniyakh teovii isgiba plastinok on the equations of the theory of bending of plates", Izv. Akd. Nauk SSR, OTN, 4, 102-109.
- Voyiadjis, G.Z. and Baluch, M.H. (1981), "Refined theory for flexural motions of isotropic elastic plates", Journal of Sound and Vibration, 76(1), 57-64. https://doi.org/10.1016/0022-460X(81)90290-X
- Voyiadjis, G.Z. and Baluch, M.H. (1988), "Refined theory for thick composite plates", ASCE J. Engrg. Mech., 114(4), 671-687. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:4(671)
- Whitney, J.M. (1969), "The effect of transverse shear deformation on the bending of laminated plates", Journal of Composite Materials, 3, 534-547. https://doi.org/10.1177/002199836900300316
- Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", Journal of Applied Mechanics, Trans. ASME, 40(1), 302-304. https://doi.org/10.1115/1.3422950
- Whitney, J.M. (1987), Structural Analysis of Laminated Anisotropic Plates, Technomic.
- Whitney, J.M. and Leissa, A.W. (1969), "Analysis of heterogeneousanisotropic plates", Journal of Applied Mechanics, 36(2), 261-266. https://doi.org/10.1115/1.3564618
- Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", Journal of Applied Mechanics, Trans. ASME, 37(4), 1031-1036. https://doi.org/10.1115/1.3408654
- Yang, P.C., Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", International Journal of Solids and Structures, 2, 665-684. https://doi.org/10.1016/0020-7683(66)90045-X
- Yu, Y.Y. (1959), "A new theory of elastic sandwich plates-one dimensional case", Journal of Applied Mechanics, 26, 415-421.
Cited by
- Analysis of damped composite sandwich plates using plate bending elements with substitute shear strain fields based on Reddy's higher-order theory vol.216, pp.5, 2002, https://doi.org/10.1243/0954406021525377
- Axisymmetric vibrations of composite annular sandwich plates of quadratically varying thickness by harmonic differential quadrature method vol.226, pp.6, 2015, https://doi.org/10.1007/s00707-014-1284-0
- Linear static analysis and finite element modeling for laminated composite plates using third order shear deformation theory vol.62, pp.1, 2003, https://doi.org/10.1016/S0263-8223(03)00081-3
- Accurate determination of coupling effects on free edge interlaminar stresses in piezoelectric laminated plates vol.30, pp.8, 2009, https://doi.org/10.1016/j.matdes.2009.01.005
- Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory vol.103, 2013, https://doi.org/10.1016/j.compstruct.2013.03.007
- On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results vol.129, 2015, https://doi.org/10.1016/j.compstruct.2015.04.007
- Natural frequencies of laminated composite plates using third order shear deformation theory vol.72, pp.3, 2006, https://doi.org/10.1016/j.compstruct.2004.11.012
- Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996‐1999) vol.17, pp.3, 2000, https://doi.org/10.1108/02644400010324893
- Buckling analysis of composite laminates under end shortening by higher-order shear deformable finite strips vol.55, pp.10, 2002, https://doi.org/10.1002/nme.547
- Macro and micro deformations in a sandwich foam core vol.35, pp.6-8, 2004, https://doi.org/10.1016/j.compositesb.2003.11.011
- A laminated composite plate finite element a-priori corrected for locking vol.28, pp.5, 2008, https://doi.org/10.12989/sem.2008.28.5.603
- Wave propagation in a sandwich plate with a periodic composite core vol.16, pp.3, 2014, https://doi.org/10.1177/1099636214528652
- A literature review on computational models for laminated composite and sandwich panels vol.1, pp.1, 2011, https://doi.org/10.2478/s13531-011-0005-x
- Large deformation dynamic finite element analysis of delaminated composite plates using contact–impact conditions vol.144, 2014, https://doi.org/10.1016/j.compstruc.2014.07.025
- Transient response of composite sandwich plates vol.64, pp.3-4, 2004, https://doi.org/10.1016/S0263-8223(03)00135-1
- Analysis of composite plates using various plate theories -Part 2: Finite element model and numerical results vol.6, pp.7, 1998, https://doi.org/10.12989/sem.1998.6.7.727
- Prediction of delamination onset and growth for AP-PLY composite laminates using the finite element method vol.101, 2017, https://doi.org/10.1016/j.compositesa.2017.06.032
- Investigation on the Vibration and Stability of Hybrid Composite Plates vol.24, pp.16, 2005, https://doi.org/10.1177/0731684405052186
- The nonlinear vibration of an initially stressed laminated plate vol.38, pp.4, 2007, https://doi.org/10.1016/j.compositesb.2006.09.002
- Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory vol.104, 2013, https://doi.org/10.1016/j.compstruct.2013.04.002
- Stochastic buckling behaviour of laminated composite structures with uncertain material properties vol.66, 2017, https://doi.org/10.1016/j.ast.2017.01.028
- Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory vol.49, pp.4, 2010, https://doi.org/10.1016/j.commatsci.2010.03.045
- FE analysis of laminated composite plates using a higher order shear deformation theory with assumed strains vol.10, pp.3, 2013, https://doi.org/10.1590/S1679-78252013000300005
- A Review of Refined Shear Deformation Theories of Isotropic and Anisotropic Laminated Plates vol.21, pp.9, 2002, https://doi.org/10.1177/073168402128988481
- Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory vol.55, 2013, https://doi.org/10.1016/j.compositesb.2013.06.044
- Analysis of laminated composite and sandwich plates based on the scaled boundary finite element method vol.187, 2018, https://doi.org/10.1016/j.compstruct.2017.11.001
- A Postprocessing Approach to Determine Transverse Stresses in Geometrically Nonlinear Composite and Sandwich Structures vol.37, pp.24, 2003, https://doi.org/10.1177/002199803038111
- Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory vol.43, 2014, https://doi.org/10.1016/j.euromechsol.2013.09.001
- Higher-order shear deformable finite strip for the flexure analysis of composite laminates vol.23, pp.2, 2001, https://doi.org/10.1016/S0141-0296(00)00010-9
- On the radially symmetric vibrations of circular sandwich plates with polar orthotropic facings and isotropic core of quadratically varying thickness by harmonic differential quadrature method vol.51, pp.3, 2016, https://doi.org/10.1007/s11012-015-0226-9
- Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory vol.33, pp.7, 2002, https://doi.org/10.1016/S1359-8368(02)00035-5
- On radially symmetric vibrations of circular sandwich plates of non-uniform thickness vol.99, 2015, https://doi.org/10.1016/j.ijmecsci.2015.04.016
- Free Vibration of Two-layered Cross-Ply Laminated Plates Using Layer-wise Trigonometric Shear Deformation Theory vol.23, pp.4, 2004, https://doi.org/10.1177/0731684404031893
- Accurate Determination of Interlaminar Stresses in General Cross-Ply Laminates vol.11, pp.1, 2004, https://doi.org/10.1080/15376490490257657
- Dynamic simulation of crack initiation and propagation in cross-ply laminates by DEM vol.71, pp.11, 2011, https://doi.org/10.1016/j.compscitech.2011.05.014
- A further study on nonlinear vibration of initially stressed plates vol.172, pp.1, 2006, https://doi.org/10.1016/j.amc.2005.02.007
- Vibration and Stability of Functionally Graded Plates Based on a Higher-order Deformation Theory vol.28, pp.10, 2009, https://doi.org/10.1177/0731684408088884
- A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates vol.32, pp.3, 2016, https://doi.org/10.1007/s00366-015-0426-x
- Assessment of plate theories for initially stressed hybrid laminated plates vol.88, pp.2, 2009, https://doi.org/10.1016/j.compstruct.2008.03.034
- A modified Fourier–Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials vol.106, 2016, https://doi.org/10.1016/j.ijmecsci.2015.11.031
- Free vibration and transverse stresses of viscoelastic laminated plates vol.30, pp.1, 2009, https://doi.org/10.1007/s10483-009-0111-y
- Deformation characteristics of composite laminates—part II: an experimental/numerical study on equivalent single-layer theories vol.62, pp.1, 2002, https://doi.org/10.1016/S0266-3538(01)00184-1
- Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading vol.60, pp.1, 2003, https://doi.org/10.1016/S0263-8223(02)00290-8
- Quadrilateral finite elements for multilayer sandwich plates vol.38, pp.5, 2003, https://doi.org/10.1243/03093240360713441
- A serendipity plate element free of modeling deficiencies for the analysis of laminated composites vol.154, 2016, https://doi.org/10.1016/j.compstruct.2016.07.042
- Free vibration and stability analysis of piezolaminated plates using the finite element method vol.22, pp.12, 2013, https://doi.org/10.1088/0964-1726/22/12/125040
- Analysis of laminated composite and sandwich plate structures using generalized layerwise HSDT and improved meshfree radial point interpolation method vol.58, 2016, https://doi.org/10.1016/j.ast.2016.09.017
- Analytical solutions for bending analysis of rectangular laminated plates with arbitrary lamination and boundary conditions vol.23, pp.8, 2009, https://doi.org/10.1007/s12206-009-0511-4
- A nonlinear modified couple stress-based third-order theory of functionally graded plates vol.94, pp.3, 2012, https://doi.org/10.1016/j.compstruct.2011.10.006
- Estimation of transverse/interlaminar stresses in laminated composites – a selective review and survey of current developments vol.49, pp.1, 2000, https://doi.org/10.1016/S0263-8223(99)00126-9
- Identification and elimination of parasitic shear in a laminated composite beam finite element vol.37, pp.8, 2006, https://doi.org/10.1016/j.advengsoft.2005.11.001
- Transient response analysis of cross-ply composite laminated rectangular plates with general boundary restraints by the method of reverberation ray matrix vol.152, 2016, https://doi.org/10.1016/j.compstruct.2016.05.035
- Through-the-thickness distribution of strains in laminated composite plates subjected to bending vol.64, pp.1, 2004, https://doi.org/10.1016/S0266-3538(03)00201-X
- Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties vol.52, pp.7, 2010, https://doi.org/10.1016/j.ijmecsci.2010.03.002
- Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions vol.35, pp.2, 1998, https://doi.org/10.12989/sem.2010.35.2.217
- NURBS-based thermo-elastic analyses of laminated and sandwich composite plates vol.44, pp.4, 1998, https://doi.org/10.1007/s12046-019-1063-7
- Development of a 2D Isoparametric Finite-Element Model Based on Reddy’s Third-Order Theory for the Bending Behavior Analysis of Composite Laminated Plates vol.55, pp.2, 1998, https://doi.org/10.1007/s11029-019-09807-y
- Evaluation of bending and post-buckling behavior of thin-walled FG beams in geometrical nonlinear regime with CUF vol.275, pp.None, 1998, https://doi.org/10.1016/j.compstruct.2021.114408