DOI QR코드

DOI QR Code

Two-dimensional nonconforming finite elements: A state-of-the-art

  • Choi, Chang-Koon (Dept. of Civil Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sun-Hoon (Dept. of Civil Engineering, Youngdong Institute of Technology) ;
  • Park, Young-Myung (Steel Structure Technology Division, Research Institute of Industrial Science and Technology) ;
  • Chung, Keun-Young (Track Structure & Environmental Division, Korea Railload Research Institute)
  • Published : 1998.01.25

Abstract

A state-of-the-art report on the new finite elements formulated by the addition of nonconforming displacement modes has been presented. The development of a series improved nonconforming finite elements for the analysis of plate and shell structures is described in the first part of this paper. These new plate and shell finite elements are established by the combined use of different improvement schemes such as; the addition of nonconforming modes, the reduced (or selective) integration, and the construction of the substitute shear strain fields. The improvement achieved may be attributable to the fact that the merits of these improvement techniques are merged into the formation of the new elements in a complementary manner. It is shown that the results obtained by the new elements give significantly improved solutions without any serious defects such as; the shear locking, spurious zero energy mode for the linear as well as nonlinear benchmark problems. Recent developments in the transition elements that have a variable number of mid-side nodes and can be effectively used in the adaptive mesh refinement are presented in the second part. Finally, the nonconforming transition flat shell elements with drilling degrees of freedom are also presented.

Keywords

References

  1. Ahmad, S.,Irons, B.M. and Zienkiewicz, O.C. (1970), "Analysis of thick and thin shell structures by curved finite elements", Int. J. Numer. Methods Eng., 2, 419-451. https://doi.org/10.1002/nme.1620020310
  2. Bathe, K.J., Wilson, E.L. and Peterson, F.E. (1974), "SAP IV-A Structural Analysis Program for Static and Dynamic Response of Linear Systems", Earthquake Engineering Research Center Report No. EERC 73-11, University of California, Berkeley, California, June 1973, revised April.
  3. Choi, C.K. and Schnobrich, W.C. (1975), "Nonconforming finite element analysis of shells", J. Eng. Mech. Div. ASCE, 101, 447-464.
  4. Choi, C.K. (1982), "General shell analysis by the nonconforming finite element", Bull. Int. Ass. Shell and Spatial Struct., 80, 5-16.
  5. Choi, C.K. (1984), "A conoidal shell analysis by modified isoparametric element", Compo. Struct., 18, 921-924. https://doi.org/10.1016/0045-7949(84)90037-3
  6. Choi, C.K. (1986), "Reduced integrated nonconforming plate element", J. Eng. Mech. Div. ASCE, 112, 370-385. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:4(370)
  7. Choi, C.K. and Kim, S.H. (1988), "Reduced integration, nonconforming modes, and their coupling in thin plate elements", Comp. Struct., 29, 57-62. https://doi.org/10.1016/0045-7949(88)90171-X
  8. Choi, C.K. and Kim, S.H. (1989), "Coupled use of reduced integration and nonconforming modes in quadratic Mindlin plate element", Int. J. Numer. Methods Eng., 28, 1909-1928. https://doi.org/10.1002/nme.1620280814
  9. Choi, C.K. and Park, Y.M. (1989), "Nonconforming transition plate bending elements with variable midsides nodes", Comp. Struct., 32, 295-304. https://doi.org/10.1016/0045-7949(89)90041-2
  10. Choi, C.K. and Kim, S.Y. (1989), "Nonconforming axisymmetric elements for the analysis of containment structures", Tran. 10th Int. Conf. SMIRT, California.
  11. Choi, C.K. and Yoo, S.W. (1991a), "Combined use of multiple improvement techniques in degenerated shell element", Comp. Struct., 39, 557-569. https://doi.org/10.1016/0045-7949(91)90064-S
  12. Choi, C.K. and Yoo, S.W. (1991b), "Geometrically nonlinear behavior of an improved degenerated shell element", Comp. Struct., 40, 785-794. https://doi.org/10.1016/0045-7949(91)90245-H
  13. Choi, C.K. and Park, Y.M. (1992), "Transition plate bending elements for compatible mesh gradation", J. Eng. Mech. Div. ASCE, 118, 462-480. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:3(462)
  14. Choi, C.K. (1992), "Development of the nonconforming elements", Proceedings of Korea-French Seminar on COMPUTATIONAL MECHANICS IN STRUCTURAL ENGINEERING,July 7-9, 1992, France, 1-18.
  15. Choi, C.K. and Lee, W.H. (1995), "Transition membrane elements with drilling freedom for local mesh refinements", Struct. Eng. Mech., 3, 75-89. https://doi.org/10.12989/sem.1995.3.1.075
  16. Choi, C.K. and Lee, W.H. (1996), "Versatile variable node flat shell element", J. Eng. Mech. Div. ASCE, 122, 432-441. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
  17. Choi, C.K. and Park, Y.M. (1997), "Conforming and nonconforming transition plate bending elements for an adaptive h-refinement", Thin-Walled Str., 28(1), 1-20. https://doi.org/10.1016/S0263-8231(97)00007-4
  18. Clough, R.W. and Johnson, C.P. (1968), "A Finite Element Approximation for Analysis of Thin Shells, Int. J. of Solids and Structures, 4(1).
  19. Cochet, J.F. and Dhatt, G.S. (1978), "Plasticity analysis by a nonconforming plane element", Int. J. Numer. Methods Eng., 12, 561-566. https://doi.org/10.1002/nme.1620120314
  20. Cook, R.D. (1972), "More on reduced integration and isoparametric elements", Int. J. Numer. Methods Eng., 5, 141-142. https://doi.org/10.1002/nme.1620050113
  21. Cook, R.D. (1974), "Improved two-dimensional finite element", J. Struct. Div. ASCE, 1851-1863.
  22. Cook, R.D. (1975), "Avoidance of parasitic shear in plane element", J. Struct. Div. ASCE, 1239-1253.
  23. Cook, R.D. (1986), "On the Allman triangle and a related quadrilateral element", Comp. Struct., 22, 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
  24. Fezans, G. and Verchery, G. (1982), "Some results on the behaviour of degenerated shell (D.S.) elements", Nucl. Eng. Des., 70,.27-35. https://doi.org/10.1016/0029-5493(82)90264-3
  25. Gupta, A.K. (1978), "A finite element for transition from a fine to a coarse grid", Int. J. Numer. Meth. Eng., 12, 35-45. https://doi.org/10.1002/nme.1620120104
  26. Hinton, E. and Huang, H.C. (1986), "A family of quadrilateral Mindlin plate elements with substitute shear strain fields", Comp. Struct., 23, 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
  27. Huang, H.C. and Hinton, E. (1986), "A new nine node degenerated shell element with enhanced membrane and shear interpolation", Int. J. Numer. Methods Eng., 22, 73-92. https://doi.org/10.1002/nme.1620220107
  28. Hughes, T.J.R. and Cohen, M. (1978), "The heterosis finite element for plate bending", Comp. Struct., 9, 445-450. https://doi.org/10.1016/0045-7949(78)90041-X
  29. Hughes, T.J.R., Cohen, M. and Haron, M. (1978), "Reduced and selective integration techniques in the finite element analysis of plates", Nuclear Eng. Desgn., 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
  30. Hughes, T.J.R. and Tezduyar, T.E. (1981), "Finite elements based upon Mindlin plate bending theory with particular reference to the four-node bilinear isoparametric element", J. Appl. Mech., 48, 587-596. https://doi.org/10.1115/1.3157679
  31. Ibrahimbegovic, A., Taylor, R.L. and Wilson, E.L. (1990), "A robust quadrilateral membrane finte element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30, 445-457. https://doi.org/10.1002/nme.1620300305
  32. Kebari, H. and Cassel, A.C. (1991), "Stabilization by nonconforming modes: 9-node membrane element with drilling freedom", Int. J. Numer. Methods Eng., 31, 1453-1468. https://doi.org/10.1002/nme.1620310714
  33. Kim, S.H. and Choi, C.K. (1988), "Improved finite element models for the analysis of plate and shell structures", SEMR88-01E, Dept. Civil Eng., KAIST.
  34. Kim, S.H. and Choi, C.K. (1992), "Improvement of quadratic finite element for Mindlin plate bending", Int. J. Numer. Methods Eng., 34, 197-208. https://doi.org/10.1002/nme.1620340112
  35. Lee, S.W. and Wong, S.C. (1982), "Mixed formulation finite elements for Mindlin theory plate bending", Int. J. Numer. Methods Eng., 18, 1297-1311. https://doi.org/10.1002/nme.1620180903
  36. MacNeal, R.H. and Harder, R.L. (1988), "A refined four-noded membrane element with rotational degrees of freedom", Comput. Struct., 28, 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
  37. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., 18, 31-38.
  38. Parisch, H. (1979), "A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration", Comp. Methods Appl. Mech. Eng., 20, 323-350. https://doi.org/10.1016/0045-7825(79)90007-0
  39. Park, Y.M. and Choi, C.K. (1997), "The patch tests and convergence for nonconforming Mindlin plate bending elements", Struct. Eng. Mech., 5, 471-490. https://doi.org/10.12989/sem.1997.5.4.471
  40. Pawsey, S.F. and Clough, R.W. (1971), "Improved numerical integration of thick shell finite elements", Int. J. Numer. Methods Eng., 3, 575-586. https://doi.org/10.1002/nme.1620030411
  41. Pugh, E.D.L., Hinton, E. and Zienkiewicz, O.C. (1978), "A study of quadrilateral plate bending elements with reduced integration", Int. J. Numer. Methods Eng., 12, 1059-1079. https://doi.org/10.1002/nme.1620120702
  42. Surana, K.S. (1983), "Geometrically nonlinear formulation for the curved shell elements", Int. J. Numer. Methods Eng., 19, 581-615. https://doi.org/10.1002/nme.1620190409
  43. Sze, K.Y. and Chow, C.L. (1991), "An incompatible element for axisymmetric structure and its modification by hybrid method", Int. J. Numer. Methods Eng., 31, 385-405. https://doi.org/10.1002/nme.1620310211
  44. Taylor, R.L., Beresford, P.J. and Wilson, E.L. (1976), "A nonconforming element for stress analysis", Int. J. Numer. Methods Eng., 10, 1211-1219. https://doi.org/10.1002/nme.1620100602
  45. Timoshenko, S.P. and Woiniwsky-Krieger, S. (1959), Theory of Plates and Shells, 2nd ed., MaGraw-Hill, New York.
  46. Tsach, U. (1981), "Locking of thin plate/shell elements", Int. J. Numer. Methods Eng., 17, 633-644. https://doi.org/10.1002/nme.1620170410
  47. Yunus, S.M. (1988), "A study of different hybrid elements with and without rotational D.O.F. for plane stress/plane strain problem", Comp. Struct., 30, 1127-1133. https://doi.org/10.1016/0045-7949(88)90155-1
  48. Wilson, E.L., Taylor, R.L., Doherty, W.P. and Ghaboussi, J. (1971), "Incompatible displacement modes", ONR Symposium on Numerical and Computer Methods in Structural Mechanics,University of Illinois, Urbana.
  49. Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Methods Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211

Cited by

  1. A direct modification method for strains due to non-conforming modes vol.11, pp.3, 2001, https://doi.org/10.12989/sem.2001.11.3.325
  2. Structural damage detection in continuum structures using successive zooming genetic algorithm vol.30, pp.2, 2008, https://doi.org/10.12989/sem.2008.30.2.135
  3. Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element vol.9, pp.1, 2000, https://doi.org/10.12989/sem.2000.9.1.099
  4. Defect-free 4-node flat shell element: NMS-4F element vol.8, pp.2, 1999, https://doi.org/10.12989/sem.1999.8.2.207
  5. Finite- and boundary-element linear and nonlinear analyses of shells and shell-like structures vol.38, pp.8, 2002, https://doi.org/10.1016/S0168-874X(01)00103-2
  6. Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996‐1999) vol.17, pp.3, 2000, https://doi.org/10.1108/02644400010324893
  7. Adaptive nodal generation with the element-free Galerkin method vol.10, pp.6, 2000, https://doi.org/10.12989/sem.2000.10.6.635
  8. Analysis of 3D wall building structures dynamic response vol.22, pp.1, 2006, https://doi.org/10.12989/sem.2006.22.1.033
  9. Weighted Integral SFEM Including Higher Order Terms vol.126, pp.8, 2000, https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(859)
  10. Adaptive crack propagation analysis with the element-free Galerkin method vol.56, pp.3, 2003, https://doi.org/10.1002/nme.564
  11. Quadratic NMS Mindlin-plate-bending element vol.46, pp.8, 1998, https://doi.org/10.1002/(sici)1097-0207(19991120)46:8<1273::aid-nme754>3.0.co;2-n