Major Element Changes in the Upper Quaternary Sediment of the East Sea (Sea of Japan): Their Implications for the Onset of Holocene

  • Hyun, Sang-Min (Marine Geology and Geophysics Division, Korea Ocean Research and Development Institute) ;
  • Han, Sang-Joon (Marine Geology and Geophysics Division, Korea Ocean Research and Development Institute) ;
  • Bahk, Jang-Jun (Marine Geology and Geophysics Division, Korea Ocean Research and Development Institute)
  • 발행 : 1998.12.31

초록

Two piston cores (94PC-2 and 95PC-4) taken from the East Sea (Sea of Japan) are studied to evaluate the paleoceanographic changes and its interaction with climatic variation. The bulk geochemistry of the non-biogenic fractions of 54 sediment samples is determined using X-ray fluorescence. Four geochemical stratigraphic units at both core sediments are recognized based on the variations in major element concentration. These chemical stratigraphic units correspond well with the sedimentological and paleontological facies. Source materials are considered as basic and/or intermediate rocks judging from silica content. A distinctive boundary around 11 kyr may correspond to Younger Dryas event. The switch of most major elements at this level and the distinctive changes in concentration of typical terrigenous elements (TiO$_2$ and Al$_2$O$_3$) are the strong evidence for the difference in sources of terrigenous materials. The weathering indices exhibit high degree in Core 94PC-2 and low degree in Core 95PC-4. The changes in weathering degree can be distinguished by the lowest value occurred at 11 kyr in Core 94PC-2 and by a gradual decrease from top to bottom in Core 95PC-4. The profiles of potassium and sodium exhibit specific excursions between the Holocene and the late Pleistocene. This implies that sediments of the two cores originating from different sources with different weathering degrees. The distinct two-group distributions in K$_2$O/CaO vs. Na$_2$O/K$_2$O also support the difference in provenance of aluminosilicate materials at the boundary of 11 kyr. Thus, supply patterns of terrigenous materials are stable in Holocene and more complicated in the last glacial period.

키워드