Bull. Korean Math. Soc. 35 (1998), No. 4, pp. 837-845

APPROXIMATIONS FOR JUMP-DIFFUSION
PROCESSES WITH NON-LIPSCHITZIAN
COEFFICIENTS

Do-WoN HONG AND IN-SUK WEE

ABSTRACT. In this work, we consider Euler approximation for one-
dimensional jump-diffusion processes under Yamada-Watanabe type
conditions on the coefficients which turns out to converge to the
strong solution in uniform I!-sense.

1. Introduction

Let (Q, F, P,{F:}t>0) be a complete probability space with {F; }s>o sat-
isfying the usual conditions. We consider an one-dimensional stochastic
differential equation with Poisson jumps:

(1)
X, = Xo + /0 Cu(Xo)ds + /0 "o(X..)dB. + /0 t / o(X,_, u)(ds, du)

where u(z) and c(zx,u) are R-valued and o(z) = (01(z), - ,04(z)) is
Re-valued for z,u € R. {B;, F;} is a standard d-dimensional Brownian
motion,

v(ds, dy) = wv(ds, dy) — Ewv(ds, dy)
= v(ds, dy) — dsII(dy)

is a compensated Poisson random measure on [0, co) x R for some o-finite
measure II, and we assume that {B,;} and {v(dt,dy)} are independent.
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It is well known that there exists a unique strong solution of equation
(1) under the Lipschitz type conditions and linear growth conditions on
the coefficients by using the Picard iteration method. (Gihman & Skoro-
hod [1]) For a continuous Ito diffusion (i.e. ¢ = 0), Yamada and Watan-
abe (5] weakened the Lipschitz conditions on u and ¢ and showed the
pathwise uniqueness of the solution which implies the existence of unique
strong solution. Furthermore, Kaneko and Nakao [2] showed that Euler
approximation converges to the strong solution in the uniform L?-sense
provided the suitable conditions for existence and pathwise uniqueness of
solutions of (1) hold. For a diffusion with jumps (i.e. ¢ # 0), Situ [4] dealt
with strong solutions of (1) with I1(dz) = dz/2? and possibly discontin-
uous drift coefficient u. In fact, he imposed the uniform ellipticity and
a continuity condition on ¢ weaker than the Lipschitz type, and linear
growth conditions on the coefficients. More recently, Mao [3] established
the existence and uniqueness of strong solution for stochastic differential
equation driven by continuous spatial semimartingale. He derived the so-
lution by showing that the Euler approximation converges to the solution
in the uniform L!-sense, where continuity of the coefficients is assumed
to be weaker than Lipschitz type. The aim of this work is to obtain
existence of unique strong solution of (1) under Yamada-Watanabe type
conditions of the coefficients via Euler approximation which turns out to
converge to the solution in uniform L!-sense. Compared to Situ’s result
[4], we deal with more general compensator measure II, but need continu-
ity of the drift coefficient. We find the technique in Mao (3] quite useful
in our setting but extra work is required to handle the jump terms.

Throughout this work, we denote a positive generic constant by C,
whose value differs from line to line.

2. Main results
We will consider the following assumptions on the coeflicients of (1)
to obtain the main result.

(A1) X is an Fy-measurable random variable such that E|Xp|? < oo.
(A2) There exists a constant C such that for all z € R

/lc(m,u)|2ﬂ(du) < C(1+ |z]).
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(A3) For all z,y € R,
() — p@) < sz —yl),
[ et = ety wITaw) < malls ),

where k; : R, — R, is a continuous nondecreasing concave function such
that £,(0) =0, f, ;35 =00, i=1,2.
(A4) For all z,y € R,

lo(z) —o@)l* < o(lz - y**)

where 1/2 < a <1, p: R, — R, is a continuous nondecreasing concave
function such that p(0) = 0, fo . ;(—:i-‘a—; = 00, and moreover, if1/2 < a <

1 then there exists another continuous nondecreasing concave function
n: R, — R, such that n(0) = 0, «1p(u??) < n(u).
(A5) For any N > 0,

lim sup/ le(z, w)|2TI(du) = 0.
0 i<V Jjulse

Now we introduce the Euler approximation for (1). For each n, we
define {X7'} as follows:

2) X=X,

d
Xi = X7+ (X7 )(t—i/n)+ ZGj(Xg-)(Bj(t) — B;(i/n))

7=1
t
+//C(X§‘_,u) v(ds, du)

if ifn<t<(i+1)/n, i=0,1,2---.

We denote by D[0, 7] the space of the functions which are right contin-
uous and having left-hand limits on [0, 7).

THEOREM. Let (A1)-(A5) hold. Then there exists a unique solution
{X:} of equation (1) whose sample paths are in D[0,T]. Moreover

limE(sup lXt—Xﬂ) =0,

n—00 0<t<T

839



Do-Won Hong and In-Suk Wee

E(sup ]Xt|2) < 00.
0<t<T

Before we prove our main result, we need to present preliminary lem-
mas. We introduce simple processes

o0
= ZXg_X{z'/n,(z'+l)/n)(t) for n=1,2,---.

i=0
Then (2) can be written as

(3)
X{‘:Xo+/t (X! )ds+/ " )dB, +//c( " u) i{ds, du).

LEMMA 1. Assume that (A1) holds and there exists a constant C > 0
such that for all x € R,

@ (@ +lo@)f + / le(z, w)PT(du) < C(1+ |z]?).
Then for any T > 0,

(5) E(sup |X{‘|2) < C1e7,
0<t<T
and
(6) sup BIXp - XP < Cofm,
0<t<T

where Cy, C> and Cj are independent of n.

Proof. 1t follows from (3) that for ¢ < 7,

E (sup IXS"I2) <4E|X | +4E (/ot |p(X;'_)]ds)2

0<s<t
. A
/ o(X? )dB:| | +4E| sup / / T w)p(dT, du)
0 0<s<t )
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Using (4), Holder’s inequality and Doob’s martingale inequality we have

t
M 5w lxr) < Gt [ B( s 2P as
0<s<t 0 0<u<s

for some positive constants Cy and C, which are independent of n. By
the Gronwall’s inequality we obtain (5). Similarly to (7), (6) follows
easily. O

LEMMA 2. Let (A1)-(A4) hold. Then for any T > 0

(8) sup E|X* - X — 0 as m,n — oo.
0<t<T

Proof. The proof runs similarly to the proof of Lemma 2.4 of [3], even
for the jump term. We only need a.n additional fact that k(u) = K (u) +
2 Kko(u) is still concave with fo " K( 5 = 00, which was derived in Lemma
1 of [4]. a

Now we are ready to provide the proof of main result.

Proof of Theorem. For m >n > 1,

© 5 (s Ixr- XZ‘I) <& (s (W(E) ~ W(X)) =)

<t<T <t<T Jo

+E(sup| (o(X2) - o(X2))dB.] )

a<t<T

(ﬁ?&' / / ((X™ u) — o( X u))l?(ds,du)[).

By (A3) and Jensen's inequality, we have

t " T
(10) E(supl (u(X;’i)—u(Xf_))dsl)S [ g -z s

0<t<T Jo
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If (A4) holds with 1/2 < a < 1, then by Burkholder-Davis-Gundy in-
equality we have

1) E(supl (o(X;'i>~a(X:_))stl)

0<t<T Jo

<CZE{/ o (X )—UJ(X")l2ds}1/2

1/2 T
<c { / p(E|X™ — X;"P“)ds} ‘e { JECES X:mds}
] 0

1 T
+ = E( sup | X — X:I)+C/ n(E| X - X}|)ds,
2 oct< 0

1/2

where C is independent of m and n. If (A4) holds with o = 1/2, it is
even easier. Again by Burkholder-Davis-Gundy inequality we have that

for any € > 0,
//(c — ¢(XP_,u)) #(ds, du) )

<CE { /0 [ (R ) el ) s, du)}m

+C {EATLalse(C(Xﬁ’U) - c(X';‘_,u))zﬂ(du)ﬂls}l/2 ,

where C is independent of m, n and €. Let

t
= // uv(ds, du).
0 Jul>e

(12) ( sup

0<t<T
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Then there exist a random number ¢ and random points 7y, 75, - -

[0,T] such that

T 1/2
(13) E {/0 /l|> le(X™,u) — (X", u)? u(ds,du)}
1/2
=E {Z (X, AY,) — (X AK»P}
< EZ (X, AY,) — o(Xp_, AY,)]

//||> Ele(X™,u) — (XD, u)| T(du)ds
< /0 ko E|XT — X71) ds.

By (5) we get that for any n, € > 0 and N > 0,

dUs

u)*TI(du)ds| > 6)
I

u|<e

+,To O

1, [ .
< P( sup | X > N) + SE/ / le(X3-, W) xx0 1<y TH(du)ds
0 Jju|<e

0<s<
C1 C T T / 2
< et :

By (A5) this implies that for any n,

/OT /l < le(X7, w)|? [1(du)ds

converges to zero in probability as € — 0. From (12) and (13) we have

(14) ( sup

0<t<T

// (e(X™,u) ~ e(XP_,u)) #(ds, du)

<c / k2 E|X™ — X7)) ds,
0

)
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where C' is independent of m and n. Combining (9), (10), (11) and (14)
we obtain that
E (sup 1x7 - x71)
0<t<T
T

SQATM(EW;H*X:IMSJFC{/O p(EIXT—X:Dds}I/Z

1/2

e[ (BT - xppeyast «cf [ " oEIXT - K3y}

T T
+C / n(EIX™ — X™)ds + C / ko (E|X™ — X)) ds,
0 1]

1/2

from which by (6) and (8),

E(sup |Xtm—Xt“l) — 0 as m,n — oo.
0<t<T

By routine arguments, it is not hard to show that there exists {X;} whose
sample paths are in D|[0, T] such that

lim FE ( sup |X; — thl) = 0,
n—oo  \Q<t<T
and it is the unique solution of equation (1) satisfying

E(sup lthz) < o0. 0
0

<t<T
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