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CONJUGACY CLASSES OF SUBGROUPS OF SPLIT
METACYCLIC GROUPS OF PRIME POWER ORDER

Hyo-SEOB Sim

ABSTRACT. In this paper, we consider conjugacy of subgroups of
some split metacyclic groups of odd prime power order to determine
the numbers of conjugacy classes of subgroups of those groups. The
study was motivated by the linear {omorphism problem of meta-
cyclic primitive linear groups.

1. Introduction

Let G = GL(n,q) be the general linear group of degree n over the
field of g elements. As is well known from the representation theory
of cyclic groups, there is a unique conjugacy class of irreducible cyclic
subgroups of order ¢" — 1 in G, which are called Singer cycles. Let
Y = (y) be such a Singer cycle. Then the normalizer H = Ng(Y) is
a split extension of Y by a cyclic group X = (a:) of order n, where
z7lyz = y9. Thus, if 7 denotes the set of prime divisors of n, we
have H = P(Q, where P is a Hall m-subgroup of H and @ the Hall
n’-subgroup of Y. In [3], it was shown that if n is a power of an odd
prime, the conjugacy classes of metacyclic primitive subgroups of G are
completely determined by the conjugacy classes of P-conjugacy classes
of subgroups of P and the irreducible subgroups of @. In this point of
view, the study of the conjugacy problem of split metacyclic p-groups
has importance.

Let P now be any finite split metacyclic p-group for an odd prime
p. Such a group P is a semidirect product of two cyclic subgroups
A and B, that is, P= A x B.
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Let C and D be arbitrary subgroups of A and B, respectively. Let
D(C, B/ D) be the (additive) group of all derivations from C to B/D,
and Z(C, B/D) the subgroup of D(C, B/D) consisting of the inner
derivations (for the related terminology and the general background,
see p. 304-305 in [2]). The corresponding factor group D(C, B/D)/
Z(C, B/ D) is the first cohomology group H(C, B/D) of C with coef-
ficients in B/D.

For every derivation § in D(C, B/D), we define

[C,D,é]:={cb:ed =bD, ce C}.

Then [C, D, 4] is a subgroup U such that UB = CB and UN B = D.
On the other hand, all subgroups of P can be realized in this way. In
fact, for every subgroup U there exist subgroups C in A and D in B
and a derivation é in D(C, B/ D) such that U = [C, D, §]. We also note
that such a realization of a given subgroup is unique.

Let A = <a> and B = <b> Then b* = b? for some positive integer
q with ¢/4l = 1 mod |B|. For any é € D(C, B/D), we define §° as the
function which maps ¢ to (¢4)?, for every ¢ € C. Note that § — §°
is an automorphism of D(C, B/D) with §° the gth multiple, ¢4, of é.
So the map induces a natural action of A on D(C, B/D). This shows
that D(C, B/D) is an A-module. Since Z(C, B/D) is evidently an A-
submodule, the quotient H(C, B/D) is also an A-module.

Then we will show that the following theorem.

THEOREM 1.1. Let h(C, D) be the order of H(C,B/D) for sub-
groups C of A and D of B, and let |g mod d| be the smallest positive

integer i such that q* = 1 mod d. There exist exactly
~

Z Z #(d)
C<A,D<B d|h(C.D) lg mod d|

conjugacy classes of the subgroups of P.

Let p® be the order of A and let p® be the p-part of ¢ — 1. Since
p is an odd prime, we see that p®*P is the p-part of gl4l — 1. In view
of our motivation, we are only interested in the case when |B| = p®*5,
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that is, A acts on B faithfully by conjugation. Note that h(C, D) is the
minimum of |C|, |D|,|B|/|C| and |B|/|D| in this case.

The following two results improve the above result under some extra
restriction.

THEOREM 1.2. Suppose that A acts on B faithfully by the conjuga-
tion and |A| divides p(q — 1). Then [C, D, é,] is conjugate to [C, D, &2]
by an element in P if and only if §; + Z(C, B/ D) = §; + I(C, B/ D); so
there exists a one to one correspondence between the set of all conju-
gacy classes of subgroups of P and H*(P) := {(C,D,A)|C < A, D <
B, A € HY(C,B/D)}.

THEOREM 1.3. Under the assumptions of Theorem 1.2, there exist
exactly

a—1
B-a+1)(p* -1)/(p-1)+4)_p(a—i)
1=0

conjugacy classes of subgroups of P.

2. Basic facts

We first state the following useful fact without proof.

LEMMA 2.1. Let p be an odd prime, let m,n be nonnegative integers
and let r be an integer.

(i) If r = 1 mod p, then |r mod p"| = p"/ ged(p™, r—1).

(ii) If *" =1 mod p", then 1 +r+--- + 7P ~! = p™ mod p".

Let G be a metacyclic group and K a cyclic normal subgroup with
cyclic quotient. Then G has a cyclic subgroup S such that G = SK.
Such a factorization G = SK is called a metacyclic factorization. In
particular, if SN K = 1, the metacyclic factorization is called split. A
metacyclic group is split if it has a split metacyclic factorization.

We now collect some basic properties of metacyclic groups; we will
use this facts without always pinpointing the references. For the proof,
see [1] for example.
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LEMMA 2.2. Let G be a metacyclic group with a metacyclic factor-
ization G = SK. Let S = <z>, K= <y> Let r be an integer such that
y® = y". Define s := |r mod |K|| and t := |K|/ ged(|K|,7—1). Then

() & = (1Y,

(ii) Z(G) = Cs(K)Ck(S) = (=°,y");

(iii) 1S/Cs(K)| = s;

(iv) |G| =t.

LEMMA 2.3. Let P be a metacyclic p-group for odd p and let P =
SK be a metacyclic factorization. Then P’ = §/Cg(K).

Proof. Since S is a finite p-group, 7P = 1 mod p for some nonnega-
tive integer 7. Fermat’s Little Theorem yields 7 = 1 mod p. By Lemma
2.1, we have s = t, so the result follows from (iii) and (iv) of the above
lemma. O

3. Conjugacy of subgroups

We now turn to the conjugacy problem of the subgroups of our split
metacyclic group P = AB. Keeping the notation in the introduction,
we shall need the following elucidation of a result observed in [3]:

LEMMA 3.1. [C, D, 8] is conjugate to [C, D, 8] by an element in P
if and only if §; + Z(C, B/ D) and d; + I(C, B/D) are in the same orbit
of the natural action of A on H*(C, B/D).

We now need to calculate the derivations, the inner derivations and
the quotients. Let ¢ be the endomorphism of B/D defined by bD
b/ D where f = (¢4 —1)/(¢/*¢! —1). An element of B/D is the image
of a generator of C under some derivation C — B/D if and only if that
element lies in ker ¢; once we know how a derivation acts on a given
generator of C, there is no doubt how it must act on the other elements
of C; hence D(C, B/D) is A-isomorphic to ker ¢. This isomorphism
maps Z(C, B/D) onto the group [C,B/D] = {[c1,l1]D : c1 € C, by €
B}. Since B/D is cyclic, the subgroups ker ¢ and [C, B/D] are also
cyclic. It now follows that D(C, B/D), I(C,B/D) and the quotient
H(C,B/D) are all cyclic. It is now sufficient to know the orders of
the groups only.
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We list the orders here without proof in the case when A acts faith-
fully on B.

LEMMA 3.2.

(i) ID(C, B/D)| = | ker ¢| = ged (B/D), el
= min{|C|, |B/D|};
(ii) |Z(C, B/D)| = LB/D] = max{1,|C|/|D|};

ged(|B/D|, gl4:C1-1)
(iif) A(C, D) = min{|C|, |D|,|B|/|C|,|B|/|D|}-

As before, let a and b be fixed generators of A and B, and let g be
a positive integer such that b* = b9.

Proof of Theorem 1.1. We first note that each subgroup U of P
has a unique realization U = [C,D,d] with C € A, D € B and § €
D(C,B/D). Then UN B = D and U/D = C. Since D is a normal
subgroup of the whole group P, we see that D is determined by the
conjugacy class of U in P. Moreover C is the unique subgroup of A
with the order |[U/D|. So C and D is completely determined by the
conjugacy class of U. This amounts to say that each conjugate V of U
in P has the realization V = [C, D, §'] for some ¢’ in D(C, B/ D).

Let d be the order of the subgroup generated by é + Z(C, B/D).
Consider the natural action of A on the set of all generators of the
group generated 6 + Z(C, B/ D). We see that the set of generators con-
sists of exactly ¢(d) elements. It is easy to see that a™ acts trivially
on § + I(C,B/D) if and only if |¢ mod d| divides m. So by Orbit-
Stabilizer Theorem, |g mod d| is the length of the A-orbit containing
6 + I(C, B/ D) of order d in H(C, B/D). Thus the set of generators
is divided into ¢(d)/|g mod d| orbits. Since h(C,D) = |H'(C, B/D)|
and HY(C,B/D) is a cyclic p-group, the claim now follows from
Lemma 3.1. a

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that |A||p(¢g — 1). The assumption
is equivalent to a —1 < 3. Note that P’ is the subgroup of B such that
|P'| = |A| and |B/P’| = pP. Let d be a positive divisor of h(C, D). If
d < |A|, then it is obvious that |¢ mod d| = 1. Suppose that d = |A|.
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Then from Lemma 3.2 (iii), h(C,D) = min{|C|,|D|,|B|/|C|,|B/D|};
so we have |B/D| > |A| and [D| > |A|. It follows that D > P,
and so |B/D| divides p°. Since d < |B/D|, we have |gmod d| = 1.
Consequently, for every divisor d of H'(C, B/D), we have |q mod d| =
1. As we observed in the proof of Theorem 1.1, |¢ mod d| is the length
of the A-orbit containing § + Z(C, B/D) of order d in H!(C, B/D). So
the first part of the Theorem is proved by Lemma 3.1.
Since

' > 4@ = D RCD = |H\(P),

C€A,DEB d|h(C,D) CeA,DeB

it follows from Theorem 1.1 that there exist precisely | H!(P)| conjugacy
classes of subgroups of P, which completes the proof of the theorem. U
We now prove Theorem 1.3.
Proof of Theorem 1.3. The condition o — 1 < 8 implies that |A| <
p|B|/|P’|. Note that |P’| = |A| provided J is positive. Let
X={(C,D):C<A, PP<DZB, |P|<|B/D|}

If D > P’ and |B/D| < |P’|, then there exits a proper subgroup D*
of P’ such that |B/D| = |D*|; so h(C, D) = h(C, D*) from Lemma 3.2
(iii). Thus

|H'(P)|= Y. hC,D)+2 ) (D)
(C,\D)ex C<A, D<P'

We proceed with some convention:

y={(C,D):C < 4, |D|<|C|, D <P}

Z={(C,D):C<A4,|c|<|D|, D< P}
Y(D)={C:(C,D) e )}
2(C)={D:(C,D) € 2}
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Then |Y(D)| = |Z(C)| = a — i provided that |C| = |D| = p*, and
the sets of all proper subgroups of A and P’ have the same cardinality.
Hence there exists a one-to-one correspondence between Y and Z.

If D < P’ and C < A then |D| < |B|/|C| from condition o — 1 < 3.
We easily observe that if (C, D) € Y then h(C, D) = |D|; otherwise the
order is |C|. So

Y hC,Dy= Y h(C,D).
(C,D)ey (C,D)eZ

Moreover, it is also obvious from Lemma 3.2 that h(C, D) = |C| if
(C, D) € X. On the other hand, the set {D : (C, D) € X} has (6—a+1)
elements. Consequently, we have

|H'(P)|= ). h(C,D)+4 > h(C,D)

(C,D)eX (C,D)ey
=) IClB-a+1)+4 ) |DIYD)
c<A D<P'
a a—1
= Zp’(ﬁ—a—t— 1) +4Zpi(a — 1)
1=0 =0
a1l 1
=2 - (B- a+1)+42p(a—z)
p- 1 =0
So the theorem is proved. O

4. An application

We here apply our result to determine the number of conjugacy
classes of metacyclic primitive subgroups of the general linear group
G = GL(p, q) for odd prime p.

Let Y = (y) be irreducible cyclic subgroup of order ¢? — 1 and let H
be the normalizer of Y in G. Then H is a split extension of Y by a cyclic
group X = (z) of order p, where z~'yx = y9. Thus we have H = PQ,
where P is a Hall p-subgroup of H and @ the Hall p/-subgroup of Y.
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With this notation, we first mention a special case of Theorem 1.1 of
3):

LEMMA 4.1. Every primitive metacyclic subgroup of G has a con-
jugate of the form M N, where M is a subgroup of P and N is an
irreducible subgroup of Q); conversely, each such product is metacyclic
and primitive. Two such products, M1 N; and MsN, are conjugate in
G if, and only if, My is P-conjugate to My and N; = No.

The following lemma is easy to derive from well-known results:

LEMMA 4.2. A subgroup U of Y is irreducible if and only if |U| does
not divide g — 1.

Let A:= X and B:= PNY. Then P = A x B. Utilizing Theorem
1.3, we now have the following immediate consequence of the above
observations.

COROLLARY 4.3. Let p be an odd prime. Let §(m) be the number
of divisors of an integer m and let 3 be the largest positive integer such
that p? divides q — 1.

(1) If p does not divide q — 1, then there exist precisely 2[6(gP —
1) — §(q — 1)) different conjugacy classes of the primitive metacyclic
subgroups in GL(p, q).

(2) If p divide q — 1, there exist precisely {(p + 1)3 + 4] - [§((¢” —
1)/p°t1) — 6((q — 1)/p%)] different conjugacy classes of the primitive
metacyclic subgroups in GL(p, q).
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