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PERMANENTS OF PRIME BOOLEAN MATRICES
HaN Hyuk CHO

ABsTRACT. We study the permanent set of the prime Boolean ma-
trices in the semigroup of Boolean matrices. We define a class My, of
prime matrices, and find all the possible permanents of the elements
in Mn.

1. Introduction

Let B = {0,1} be the Boolean algebra with operations (+,-) and
the standard order < : a + b= maz{a,b} and a - b = min{a,b}. Then
the set B, of all n x n matrices over B (Boolean matrices) forms a
partially ordered multiplicative matrix semigroup under these Boolean
operations and order.

For m x n Boolean matrices A and B, if the (i, j)-th entry A;; of A
is less than or equal to B;; for each i and j, then we say B dominates
A (or B contains A), and is denoted by A < B. If A dominates a
permutation matrix, then A is called a Hall matrix and the set H, of
all n x n Hall matrices is a subsemigroup of B,,.

DEFINITION 1.1. Let G be a multiplicative semigroup with an iden-
tity element. A non-zero non-invertible element A € G is a prime ele-
ment of G if A cannot be expressed as a product of two non-invertible
elements of G. A is called factorizable in G if A is not prime in G.

For a Boolean matrix A € B, A;. and A,; denote respectively the 7-
th row and the j-th column of A. The Boolean rank of A is the smallest
integer r such that A = B-C, where B and C are nxr and r xn Boolean
matrices respectively (the Boolean rank of any zero matrix is zero). A
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is called a rank-one matrix if A can be expressed as a Boolean product
of a length n column vector and a row vector. Note that A = B-C
implies A = >_7_, R;, where R; = B,; - C;,. Therefore the Boolean
rank of A is the minimum number of rank-one dominated submatrices
of A whose Boolean sum is A.

A row Ai. of A € B, is an independent row of A if Ak, cannot
be expressed as a Boolean sum of some other rows of A (independent
column of A is defined similarly). Then the row (respectively column)
rank of A is the maximum number of independent rows (respectively
columns) of A. A row or a column of a matrix is called a line, and the
term rank of A is the minimum number of lines needed to cover all the
nonzero entries of A. We say a matrix A has a line domination property
if a row (or a column) of A dominates another row (column).

PROPOSITION 1.2 (D. de Caen and Gregory [4]). Let A € B,, be a
prime Boolean matrix. Then

(i) The Boolean rank of A is n.
(if) A does not have a line domination property.

It follows from Koénig’s Theorem that the term rank of A € B, is
greater than or equal to its Boolean rank. Thus if the Boolean rank of
A is n, then the term rank of A is also n. Therefore a prime Boolean
matrix is a Hall matrix. Also a prime Boolean matrix has full row rank
and full column rank since the Boolean rank of A € B,, is greater than
or equal to the row rank and the column rank of A. Also note that the
above statements (i) and (ii) are logically independent [6, 7).

DEFINITION 1.3. For an n x n Boolean matrix A € B, the perma-

nent per(A) of A is the number of nxn permutation matrices dominated
by A.

For A € By, per(A) is equal to the real sum of }° g a15(1)025(2) -
** @no(n), Where Sy, denotes the set of all permutations on {1,...,n}.
A € B, is a fully indecomposable matrix if A is not permutation

equivalent to a matrix of the form ) , where B; and Bj are

Bl *
O B
square matrices and O denotes a zero matrix. Also A is partly decom-
posable if A is not fully indecomposable, and A is nearly decomposable
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if deleting any positive entry of A results in a partly decomposable
matrix. For A € B, 0(A) denotes the number of nonzero entries in A.

PROPOSITION 1.4. Let A € B, be a prime Boolean matrix. Then,

(i) A is permutation equivalent to a direct sum of a fully indecom-
posable prime and an identity matrix or a fully indecomposable
matrix. "

(ii) per(A) > 2

Proof. (i) Refer to Cho [5]. (ii) It is well known that for an nxn fully
indecomposable matrix B, per(B) > o(B) —2n+ 2 (Minc’s inequality),
and thus per(B) > 2. Therefore per(A) > 2 by (i) and Minc’s inequality
when A € B,, is a prime Boolean matrix. O

It is well known that any nonsingular real matrix in the semigroup
R, of n x n real matrices can be written as a product of elementary
matrices. Similarly every n x n Boolean matrix of Boolean rank n can
be expressed as a product of prime matrices and elementary matrices
[5]. Some other properties of the prime matrices are given in [1, 2, 8,
9].

2. Permanent set of prime Boolean matrices

Let P, denote the set of all prime matrices in B,,, and Q,, = {per(A)|
A € P,}. Then what is the structure of the permanent set ), and what
is the maximum value of Q,,7 Is there any gap in Q,? To give a partial
answer, we define a subset M,, of P, such that M,, = {4|A € P,
and per(A) = 0(A) — 2n + 2}, and we study the permanent set N, =
{per(A)|A € M,} in this section.

PROPOSITION 2.1 (Brualdi and Gibson [3]). A fully indecomposable
matrix A € B, has per(A) = o(A) — 2n + 2 if and only if there exists

an integer p with 0 < p < n — 1 such that A is permutation equivalent

to a matrix N = g 2) , where F is an (n — p) x (p + 1) matrix

and G and HT are matrices with exactly two 1’s in each row.

For A € By, let 0.(A) (respectively, o.(A)) denote the maximum
row (column) sum of the rows (columns) of A. A rank-one dominated
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submatrix R of A is nontrivial if o,.(R) > 2 and o.(R) > 2. We can
define A — R as usual when R < A. E, (7, ) denotes an n X n Boolean
matrix whose (Z, j)-th entry is the only nonzero entry.

LEMMA 2.2. Let the permanent of A € B,, be 0(A) — 2n + 2, and
let A have no line domination property. Then, A is in M,, if and only
if A is fully indecomposable and A — R has no (n — p) X (p+ 1) zero
submatrix for each nontrivial rank-one dominated submatrix R of A.

Proof. By Proposition 2.1, if A is fully indecomposable, then A is

g 2), where F is an

(n—p) x (p+1) matrix and G and HT have exactly two 1’s in each row.

NowletD= (& © ansz(O 0>,and1etE=D+En(a,ﬂ),

permutation equivalent to a matrix N =

O H F O
where E,(c,) < M. Note that the term rank of E is n since there
exists a permutation matrix P in N dominating E,(a,3). Also note
that if there is a nontrivial rank-one dominated submatrix R of IV, then
we have R < M since N has no line domination property.

(Only if part) By proposition 1.4 and Minc’s inequality, A is fully
indecomposable since A is in M,,. Thus without loss of generality, we
may assume that A is of the form N. Now suppose that there is an
(n—p) x (p+ 1) zero submatrix of N — R for some nontrivial rank-one
dominated submatrix R of N. Then there are n — 1 many rows and
columns of N — R such that the sum of these lines of N — R and R
is N. Thus we can have n many rank-one dominated submatrices of
A such that the sum is A and one of them is a nontrivial rank-one
matrix. Therefore A is a factorizable matrix, a contradiction. Thus
for each nontrivial rank-one dominated submatrix R of A, there is no
(n—p) x (p+ 1) zero submatrix of A — R.

(If part) By the assumption, we may assume that A is of the form
N since A is fully indecomposable. Now let N = B - C for some B
and C in B, with R; = B,; - C;x. Then we claim that B or C is a
permutation matrix, and argue as follows: If all the R;’s are trivial
rank-one dominated submatrices of N, then each nonzero line (row
or column) of R; is contained in a line of N. Therefore the positive
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entries of N can be covered by n-many lines of N and N is a partly
decomposable matrix, a contradiction. So one of R;’s, say R;, is a
nontrivial rank-one dominated submatrix of N. Then R; < M and R;
must contain an E,(a, ) since we assume that N — R; does not have
(n—p) X (p+ 1) zero submatrix. Since the term ranks of D and E are
n — 1 and n respectively, we need at least n many rows and columns
of N to cover the positive entries of N — R;. Hence N and A are
primes in B, since every nontrivial rank-one dominated submatrix of
N is contained in M. d

THEOREM 2.3. Let n > 3 and N,, = {per(A)|A € M,,}. Then,

(1) The maximum p, of the set N, is [ﬁ%ﬁ] , and the minimum
of N, is 2.

(ii) For each s with 2 < s < py,, there exists a prime matrix A € M,
such that per(A) = s.

Proof. When n = 3 or n = 4, the theorem holds since every nearly
decomposable matrix is in M, [5]. Thus we consider the case when
n > 5 in the following proof.

(i) Let A € M,,. By Proposition 2.1 and Lemma 2.2, we may assume
that A is of the form N = (g IO{) , where F'is an (n —p) x (p+1)
matrix and G and HT have exactly two 1’s in each row. Let r and ¢
be the number of minimum number of zero entries in the rows and the
columns of F' respectively. Note that r and ¢ cannot be 0 since there is
no all-one row and column in F.

Now we claim that per(N) < (n —p—1)p+ 1, and argue as follows:
First, if both r and s are greater than one (so each row and column
of F contains at least two 0’s), then the claim holds by the counting
argument. Second, let r be 1. Also let o(Fx,) = p for some k and the
(z,7)-th entry of N contained in Fj, be 0. Then for each a, the (o, 7)-th
entry of N located in G,. should be 1 not to be contained in the i-th
row N;, of N. So G is permutation equivalent to the following Boolean
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matrix

[Usy
p—t

1 1
where the unspecified entries are all zero. Now consider the case (1):

for some (3, the (8, j)-th entry of N located in F is 1, and the case (2):
there is no such 3 satisfying the condition specified in the case (1).

In case (1), except the (8, j)-th entry all the entries of Ng, located
inside of F' are zero, and this means the claim is true. In case (2), we
have a zero column F,;. Since each column of F' must have at least one
zero entry, we see the claim is true by the counting argument. From
all these cases, we have per(N) = o(F) < (n—p—1)p+ 1. Let Q be
the matrix N whose blocks F, G, and H are of the form ¥, G, and ‘H
respectively, and F, H are as follows:

0 1

where the entries in the *-part of F are all one and the unspecified
entries of H are all zero. Then the permanent of such matrix Q is
exactly equal to (n —p—1)p+ 1 and Q@ € M, by Lemma 2.2. Thus
the maximum possible permanent of the matrices in M,, having such
an (n—p) X (p+1) submatrix F is (n —p—1)p+1. Since the maximum
of the p-variable quadratic function —p? 4+ (n — 1)p + 1 is taken when
p= -"—;1, the maximum possible permanent p,, of the matrices in M,

is "2—_:‘;’35 for even n and ﬁl%'ﬁé for odd n. Note that per(4) > 2
for A € M,, by Proposition 1.4.

(ii) For the low-left block F of the matrix  considered in (i), let £,
be a matrix obtained from F by replacing » many nonzero entries in the
x—part of F by zero such that f,. has no zero row and no zero column.
Now let 2, be the matrix obtained from §2 by replacing F by f.. Note
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that per(2,) = (n—p—1)p+ 1 —7. Also Q. is fully indecomposable
and prime by Lemma 2.2, and thus Q, € M,,. Using this method, we
can construct a prime matrix A in M,, with per(A) = s for any s with
maz{n —p,p+1} <s<(n—p-1)p+1

Next, consider a prime matrix A = (G o ) , where F', G, and H

F H

are as follows:

0 . 0 1 11 1

F= o, 6= 1 JH=|1 ,
0 : 1 1
1 0 - 0 11 1

where the unspecified entries of the matrices are all zero. Let g, be
a matrix obtained from F' by replacing r many zero entries of F' by
one such that there is no line domination in g,.. Now let A, be the
matrix obtained from A by replacing F' by g,. Then by Lemma 2.2
A, € M,, and per(A,) = 2 + r. Note that there is no prime matrix
strictly contained in A [5]. Thus we can construct a prime matrix A in
M,, with per(A) = s for any s with 2 < s < maz{n—-p,p+1} - 1.
From these two kinds of constructions, we see that for each s with
2 < s £ p, there is a prime matrix A in M,, with per(4) = s. O

3. Closing remarks

Let P, be the poset of prime matrices of B,,. For A € P, A is called
a minimal prime matrix if there is no prime matrix strictly dominated
by A, and A is called a maximal prime matrix if there is no prime
matrix containing A strictly. A is called a nearly factorizable matrix if
A is prime and deleting any positive entry of A results in a factorizable
matrix.

Consider the following 5 by 5 Boolean matrix

11000
01100
A=11 0 0 1 1
0 0110
00101
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Note that A is a fully indecomposable prime matrix. Also note that
A is nearly factorizable since deleting any positive (i, 7)-th entry of A
results in a line domination in A. We can check that A is not a minimal
prime matrix but a maximal prime matrix in Bs. In summary, there is
a nearly factorizable matrix A in B,, such that A is not a minimal prime
matrix but a maximal prime matrix in B,. It seems to be interesting
to study minimal primes and maximal primes.

Consider Qs = {per(A)|A € Ps}, M5 = {per(A)|A € Ps, per(A) =
o(A) —2-5-+2}. We can check that there are six fully indecomposable
prime matrices in Bs, and Qs = {2,3,4,5}. Also we can check that M5
is the set of all fully indecomposable prime matrices of Bs, and N5 =
{2,3,4,5}. Thus the maximum of Qs is 5 and there is no gap between
2 and this maximum value 5. Once again we propose the following
problems. (1) : Determine the maximum of Q,. (2) : Determine the
gaps (if any) in the set Q,. In fact, the question (1) is the problem of
finding the maximal primes in B,,.
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