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ON DERIVATIONS IN NONCOMMUTATIVE
SEMISIMPLE BANACH ALGEBRAS

YoONG- S00 JUNG

ABSTRACT. The purpose of this paper is to prove the following re-
sults: Let A be a noncommutative semisimple Banach algebra. (1)
Suppose that a linear derivation D : A — A is such that [D(z),z]z =
0 holds for all x € A. Then we have D = 0. (2) Suppose that a
linear derivation D : A — A is such that D(z)z? +z2D(z) = 0 holds
for all z € A. Then we have D = 0.

1. Introduction

Throughout this paper R will represent an associative ring with cen-
ter Z(R), and A will represent an algebra over a complex field. The
commutator xy — yx will be denoted by [z,y]. We make use of the basic
commutator identities [zy, 2] = [z, 2|y +z[y, 2], [z, y2] = [z, y]z+y(z, 2].
An additive mapping D from R to R is called a derivation if D(zy) =
D(z)y+zD(y) holds for all z,y € R. A derivation D is inner if there ex-
ists a € R such that D(z) = [a, z] holds for all z € R. Recall that a ring
R is prime if aRb = (0) implies that either a = 0 or b = 0. Sinclair [1]
has proved that every linear derivation on a semisimple Banach algebra
is continuous. Singer and Wermer [4] state that every continuous linear
derivation on a commutative Banach algebra maps the algebra into its
Jacobson radical. Combining these two results we obtain that there are
no nonzero derivations on a commutative semisimple Banach algebra.
Now it seems natural to ask, under what additional assumptions a lin-
ear derivation on a noncommutative semisimple Banach algebra is zero.
It is our aim in this paper to give answers to the question above.
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2. The results
We now state and prove the main results.

THEOREM 2.1. Let A be a noncommutative semisimple Banach al-
gebra. Suppose that there exists a linear derivation D : A — A such
that [D(z), x|z = 0 holds for all x € A. Then we have D = 0.

Proof of Theorem 2.1. For the proof of the theorem we shall need
the following purely algebraic result which can be proved without any
specific knowledge concerning prime rings. O

LEMMA 2.1. Let R be a noncommutative prime ring of characteristic
different from two and I a nonzero two-sided ideal of R. Suppose that
there exists a derivation D : R — R such that [D(z),z]x = 0 holds for
all x € I. Then we have D = 0 on R.

Proof of Lemma 2.1. We define a mapping B(.,.) : I x I — I by the
relation

(1) B(z,y) = [D(x),y] + [D(y),z], =,y € I.

Obviously, B(z,y) = B(y,z) for all z,y € I and B(.,.) is additive in
both arguments. Moreover, a simple calculation shows that the relation

(2)  B(zy,z) = B(z,2)y + zB(y, 2) + D(z)[y, 2] + [, 2] D(v)
holds for all z,y,z € I. We shall write f(x) for B(z,z). Then
(3) f(z) =2[D(z),z], z € I.

It is easy to see that

(4) flz+y) = f(z) + f(y) + 2B(=z,y)

is fulfilled for all z,y € I. Now the assumption of the lemma can be
written as follows

(5) fl@)z=0,zel.
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The linearization of (5) gives

0= (f(=) + f(y) + 2B(z,y))(z + ¥)
(6) = f(z)z + f(y)z + 2B(z,y)z + f(z)y
+ f(y)y + 2B(z,y)y,

which reduces to
(7 f(@)y + f(y)z + 2B(z,y)z + 2B(z,y)y = 0, z,y € I.

Replacing x by —z in (7), and subtracting the new result from (7), we
have

(8) f(z)y +2B(z,y)x =0, z,y € I,

since R is of characteristic not two. Let y be yx in (8). Then, by (5)
and (8), we get

0 = f(z)yx + 2B(z, yx)x

®) — 2y, 7| D(z)z, 7,y € I.

Hence we arrive at

(10) [y,z]D(z)x =0, z,y € I,

since R is -of characteristic not two. We intend to prove that
(11) D(z)z=0

holds for all x € I. Suppose on the contrary that D(a)a # 0 for
some g € I. Note that I is a non-zero noncommutative prime ring of
characteristic not two and a mapping y +— [y, a] is an inner derivation
on I. Then (10)and Lemma 1 in [2] imply a € Z(I). We have therefore
proved that D(z)x = 0 in case z ¢ Z(I). It remains to prove that
D(z)x = 0 also in the case when z € Z(I). Let z € Z(I) and let
y ¢ Z(I). We have also z +y ¢ Z(I). We see that D(y)y = 0 and
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D(z + y)(z +y) = 0. Then 0 = (D(z) + D(y))(z + y) = D(z)z +
D(z)y + D(y)z + D(y)y = D(z)x + D(z)y + D(y)x. Hence

(12) D(z)z + D(z)y + D(y)z = 0.
Replacing = by —z in (12), we have
(13) D(z)x — D(z)y — D(y)x = 0.

From (12) and (13) it follows D(z)x = 0, which completes the proof of
(11). The linearization of (11) leads to

(14) D(z)y+ D(y)x =0, z,y € I.
Substituting zy for y in (14), we get

0 = D(z)zy + D(2y)x
= D(x)zy + zD(y)z + D(2)yz, z,y €1, z€ R.

(15)
Combining (14) with (15), we obtain
(16) [D(z),zly + D(2)yz =0, z,ye€ 1, z€ R.
Replacing z by D(z) in (16), we have

D*(z)yz =0, z,yeI.

Since I is prime, we know that D?(z) = 0 holds for all z € I. This
yields D(z) = 0 for all z € I by Theorem 1 in [2]. Now, substituting rz
(r € R) for z, we have D(r)x = 0, that is, D(r)I = 0. Since R is prime
and T is nonzero, it follows that D(r) = 0 for all » € R. The proof of
Lemma 2.1 is complete. d
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Proof of Theorem 2.1 continued. By the result of Johnson and Sin-
clair [1] every linear derivation on a semisimple Banach algebra is con-
tinuous. Sinclair [3] has proved that every continuous linear deriva-
tion on a Banach algebra leaves the primitive ideals of A invariant.
Hence for any primitive ideal P C A,we can define a linear derivation
Dp: A/P — A/P by Dp(z + P) = D(z) + P, z € A. The assumption
of the theorem [D(z), z]z = 0,z € A gives [Dp(x+ P),z+ Pl(z+ P) =
P,z € A. Since P is a primitive ideal, A/P is prime. Hence, in case
A/ P is noncommutative, we have Dp = 0, since all the assumptions
of Lemma 2.1 are fulfilled. In case A/P is commutative, we can con-
clude that Dp = 0 as well since A/P is semisimple and since we know
that there are no nonzero linear derivations on commutative semisim-
ple Banach algebras. This implies that D(z) is in the intersection of all
primitive ideals of A for all x € A. Since the intersection of all primitive
ideals is the Jacobson radical, and A is semisimple, it follows D = 0.
The proof of Theorem 2.1 is complete.

As a special case of Theorem 2.1 we obtain the following result
which characterizes commutative semisimple Banach algebras among
all semisimple Banach algebras. 0

COROLLARY 2.1. Let A be a semisimple Banach algebra. Suppose
that [[z,y), z]z = 0 holds for all z,y € A. Then A is commutative.

THEOREM 2.2. Let A be a noncommutative semisimple Banach al-
gebra. Suppose that there exists a linear derivation D : A — A such
that D(z)z? + 22D(z) = 0 holds for all x € A. Then we have D = 0.

Proof of Theorem 2.2. For the proof of Theorem 2.2 as in Theorem
2.1 we also need prove the following algebraic result. O

LeMMA 2.2. Let R be a noncommutative prime ring of characteristic
different from two and I a nonzero two-sided ideal of R. Suppose that
there exists a derivation D : R — R such that D(z)z? + z2D(z) = 0
holds for all x € I. Then we have D =0 on R.

Proof of Lemma 2.2. Suppose that
(1) D(z)z* + z2D(z) = 0
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holds for all x € I. The linearization of (1) leads to

0 = D(z)zy + D(x)yz + D(z)y? + D(y)z? + D(y)zy
(2) + D(y)yz + 2z°D(y) + zyD(x) + zyD(y)
+yzD(z) + yxD(y) + ¥*D(z), z,y € I.

Replacing y by —y in (2), and subtracting the result from (2), we have

D(z)zy + D(z)yz + D(y)z?® + sz(y)
(3) + zyD(z) + yzD(z) =0, z,y € I,

since R is of characteristic not two. Substituting zy for y in (3) and
using (1), we arrive at

D(z)zyzr + zD(x)z® + D(z)yz + =3 D(y)
(4) + 2%yD(z) + zyzD(z) =0, z,y € I.

Left multiplication of (3) by z leads to

zD(z)zy + zD(x)yz + zD(y)z* + 3 D(y)
(5) + 2?yD(z) + zyzD(zx) = 0, ,y € I.

Subtracting (5) from (4), we obtain

(6) —zD(z)zy + [D(x), zlyz + D(z)yz® = 0, z,y € I.
Replacing y by yD(z) in (6), we have

(1) —zD(x)zyD(z) + [D(z),zJyD(z)x + D(z)yD(z)z? =0, z,y € I.
Right multiplication of (6) by D(x) gives

(8) —zD(z)ryD(z) + [D(z),z)yzD(z) + D(z)yz*D(z) =0, z,y € I.
Subtracting (8) from (7), we obtain

(9) D(z)y|D(z),z”) + [D(x), 2]y[D(z),z) = 0, z,y € I.
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Putting xy instead of y in (9), it follows that
(10)  D(z)xy[D(x),z*) + [D(z), z]zy[D(z),z] = 0, z,y € I.
Left multiplication of (10) by z gives
(11)  zD(z)y[D(z),z?] + z[D(z), zly[D(z),z] = 0, z,y € I.
Subtracting (11) from (10), we obtain

[D(z), 2]y[D(z),z”]
(12) + [[D(z), 7], zly(D(z),2] = 0, z,y € I.

Replacing y by y[D(z), z]z in (12), we get

(D(z), zly[D(z), z)z[D(x), z°]
+ [[D(x)’x]’m]y[D(m)7x]z[D(m),$] = 0, z,Yy,z € I
Using (12) we can write —[[D(z), z]z]2[D(z), z] for [D(z), z]z[D(z), z?]
a.nld ~[D(z), z]y[D(z), 2% for [[D(z), z], zJy[D(z),z] in the above cal-
culation.

Hence we arrive at

[D(z), zly[[D(z), z], z]2[D(z), 2]
+ [D(z), zly[D(z), &*|2[D(x), z] = 0,

which can be reduced in the form
[D(z), zly[D(z), z)xz[D(z),z] = 0, z,y,z € I.
Since [ is a prime ring, it follows that
[D(z),z]z =0

holds for all € I. This implies that D = 0 on R by Lemma 2.1. The
proof of Lemma 2.2 is complete. O
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Proof of Theorem 2.2 continued. Let us use the same argument as
that used to prove Theorem 2.1. Then we can define a linear derivation
Dp: A/P — A/P, where P is any primitive ideal of A, by Dp(z+ P) =
D(z) + P, z € A. Also the assumption of Theorem 2.2 D(z)z? +
z2D(z) = 0, z € A gives Dp(z+ P)(z+ P)?+ (z+ P)?Dp(z+ P) = P,
z € A. Hence Lemma 2.2 deduces Dp = 0, and semisimplicity of A
forces D = 0. The proof of Theorem 2.2 is complete. a

We also obtain the following result as a special case of Theorem 2.2
as in Corollary 2.1.

COROLLARY 2.2. Let A be a semisimple Banach algebra. Suppose
that [z, y)z?+x%[z,y] = 0 holds for allz,y € A. Then A is commutative.
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