THE C^r CLOSING LEMMA FOR CHAIN RECURRENCE IN COMPACT SURFACES

SUNG-KYU CHOI, KEON-HEE LEE AND JONG SUH PARK

ABSTRACT. We prove the C^r Closing Lemma for chain recurrence in compact surfaces.

Solving the Closing Lemma is interesting in its own right, but more because it implies generically that a dynamical system already has its periodic orbits dense in its set of nonwandering orbits. The first statement and proof of C^1 Closing Lemma (for nonwandering points) are due to Pugh [5]. There was a gap in his proof which was repaired in [7]. As proved by Pugh and Robinson, the C^1 Closing Lemma states that if p is a nonwandering point of a C^1 vector field X on a compact manifold M then every neighborhood of X in the C^1 topology contains a vector field Y having a periodic orbit through Y. The Y Closing Lemma says that if Y is Y then Y can be found in any Y neighborhood of Y, $Y \ge 0$.

For r > 1 the C^r Closing Lemma has not yet to be verified, even generically, and is known only for very special cases. For detailed historical comments, see [2, 4, 5, 6, 7].

Peixoto and Pugh [4] improved the above results at the chain recurrent points, which are the weakest type of recurrence in dynamics theory. To be precise, they proved that any chain recurrent point of a C^r vector field X on the plane \mathbb{R}^2 can be periodic under a C^r perturbation of X in the C^r Whitney topology if every fixed point of X is hyperbolic.

Received October 26, 1995. Revised February 20, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 58F; Secondary 58F10.

Key words and phrases: chain recurrence, Closing Lemma, Connecting Lemma. The present study was partially supported by the BSRI, Ministry of Education, Korea, 1994, Project No. 94-1428.

Until 1992, there was an open fundamental question in dynamics, reasonably called the C^1 Connecting Lemma:

for a flow ϕ on a manifold M and $p,q \in M$, we suppose

$$\omega(p) \cap \alpha(q) \neq \emptyset$$

where $\alpha(q) = \{x \in M : \phi_{t_n}(q) \to x \text{ for some } t_n \to -\infty\}$. does there exist a flow that C^1 -approximates ϕ for which p, q lie on the same orbit?

Pugh gave an example to show that the C^1 Connecting Lemma is false. The example was constructed in the plane using the concept of the flow plug. Also he constructed a C^1 flow ϕ on the punctured torus, $T^2 - \{0\}$, with chain recurrent orbits which cannot be periodic using C^1 small perturbations (see figure 8 in [6]). Consequently, he disproves the C^1 -Closing Lemma for chain recurrence on noncompact 2-manifolds in general, but on compact 2-manifolds it is still an open question (for more details, see [6]).

The purpose of this note is to try to solve the above open question, using the technics which are used to prove the C^0 Closing Lemma for chain recurrence in noncompact n-manifolds .

Throughout the paper, we will follow the definitions and notations given in [2].

THEOREM. Let M be a compact orientible C^{∞} -manifold of dimension 2, X a C^{τ} vector field on M with $r \geq 1$, and p a chain recurrent point of X. For each neighborhood \mathcal{U} of X in the space $\mathcal{X}^{\tau}(M)$ of C^{τ} vector fields on M with the C^{τ} topology, there exists $Y \in \mathcal{U}$ such that Y has a closed orbit through p.

Proof. Let $p \in M$ be a nontrivial chain recurrent point for X, and $\varepsilon > 0$ be arbitrary. Using the same technics as in the proof of Lemma 3.5 in [2], we can choose $0 < a < \delta(p)$ such that for any time $t \in [-a, a]$, two points $O(\phi^{\perp}(p,t)) \cap O^{\perp}(p,-\delta(p))$ and p can be connected by a trajectry arc of a vector field $Y \in \mathcal{U}(X,\varepsilon)$, with Y = X outside N_p . Choose a continuous function $\xi : M_0 \to (0,\infty)$ such that

- (1) $B(p,\xi(p)) \subset \{O(\phi^{\perp}(p,s)) \cap O^{\perp}\phi(p,t)\}: |t| \leq \delta(p), |s| \leq \frac{a}{3}$
- (2) $B(x,\xi(x)) \subset \{O(\phi^{\perp}(x,s)) \cap O^{\perp}(\phi(x,t)) : |t| \leq \delta(x), |s| \leq \frac{1}{3}c(x)\delta(x)\}, \text{ if } x \neq p.$

Closing Lemma for chain recurrence

Since p is chain recurrent, there exists $(\xi, 1)$ -chain $(p_1, t_1), ..., (p_n, t_n)$ from p to p. Since $d(\phi(p_i, t_i), p_{i+1}) < \xi(p_{i+1})$ for $1 \le i \le n-1$, we can choose a C^{r+1} -curve $\alpha_i : [0, b_i] \to M_0$ such that

$$(1) \ \ \alpha_i(0) = x_i = [p_i, \phi(p_i, t_i)] \cap O^{\perp}(\phi(p_{i+1}, -\delta(p_{i+1})))$$

(2)
$$\alpha_i(b_i) = y_{i+1} = \phi(p_{i+1}, \delta(p_{i+1}))$$

(3)
$$\dot{\alpha}_i(0) = X_{x_i}, \dot{\alpha}_i(b_i) = X_{y_{i+1}}$$

$$(4) \|\dot{\alpha}_i - X\|_r < \varepsilon$$

Similarly we can choose a C^{r+1} -curve $\alpha_n:[0,b_n]\to M_0$ such that

(1)
$$\alpha_n(0) = x_n = [p_n, \phi(p_n, t_n)] \cap O^{\perp}(\phi(p, -\delta(p)))$$

(2)
$$\alpha_n(b_n) = p, \dot{\alpha}_n(0) = X_{x_n}, \dot{\alpha}_n(b_n) = X_p$$

(3)
$$\|\dot{\alpha}_n - X\|_r < \varepsilon$$

In this way, we can construct a simple closed C^{r+1} -curve α in M_0 such that

(1)
$$\alpha(0) = p = \alpha(T), \alpha(t+T) = \alpha(t), \text{ for some } T > 0$$

(2)
$$\|\dot{\alpha} - X\|_r < \varepsilon$$

Even if the flow boxes are overlap, we can select a periodic curve α which we want. Since $X_x^{\perp} \neq 0$ for any $x \in \alpha$, there exists a neighborhood U of α in M_0 such that $X_p^{\perp} \neq 0$ for any $p \in \overline{U}$. Choose b > 0 such that $\phi^{\perp}(\alpha \times [-b,b]) \subset U$. Let $f: \mathbb{R} \to \mathbb{R}$ be a C^{∞} -bump function such that f(t) = 0 for $|t| \geq b$, f(0) = 1, and 0 < f(t) < 1 for 0 < |t| < b. Define a vector field Y on M as follow; for any $x \in M$,

$$Y(x) = \{ egin{aligned} X_x + f(t) V_y(t), & ext{if } x = \phi^\perp(y,t), y \in lpha, |t| \leq b \ X_x, & ext{if } x
otin \phi^\perp(lpha imes [-b,b]) \end{aligned}$$

where $V_y(t)$ is the parallel transport of $\dot{\alpha}(y) - X_y$ along $O^{\perp}(y)$. Then we have $\|X - Y\|_r < \varepsilon$ and p is a periodic point of Y. This completes the proof.

References

- K. H. Lee and J. S. Park, Points which satisfy the Closing Lemma, Far East J. Math. Sci. 3 (1995), 171-177.
- [2] M. L. A. Peixoto, The Closing Lemma for generalized recurrence in the plane, Trans. Amer. Math. Soc. 308 (1988), 143-357.

Sung-Kyu Choi, Keon-Hee Lee and Jong Suh Park

- [3] M. M. Peixoto and C. Pugh, Structurally stable systems on open manifolds are never dense, Annals of Mathematics 87 (1968), 423-430.
- [4] M. L. A. Peixoto and C. Pugh, The Planar Closing Lemma for chain recurrence, Trans. Amer. Math. Soc. **341** (1994), 173-192.
- [5] C. Pugh, The C¹ Closing Lemma, Amer. J. Math. 89 (1967), 956-1009.
- [6] \longrightarrow , The C^1 Connecting Lemma, J. Dynamics and Diff. Equations 4 (1992), 545-553.
- [7] C. Pugh and C. Robinson, The C¹ Closing Lemma including Hamiltonians, Ergodic Theory and Dynamical Systems 3 (1983), 261-313.

DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, TAEJON 305-764, KOREA