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SUBMANIFOLDS WITH PARALLEL
NORMAL MEAN CURVATURE VECTOR

Lu Jrran

ABSTRACT. In this paper, we study submanifolds in the Euclidean
space with parallel normal mean curvature vector and special quadric
representation. Especially we give a complete classification result
relative to surfaces satisfying these conditions.

1. Introduction

Let z : M™ — E™ be an isometric immersion of an n-dimensional Rie-
mannian manifold into the m-dimensional Euclidean space, and SM(m)
be the space of the real symmetric matrices of order m. We define on
SM(m) the metric g(P, Q) = 3tr(PQ), for arbitrary P,Q in SM(m).
Then this space becomes the standard im(m + 1)-dimensional Eu-
clidean space [2]. We regard = as a column matrix in E™ and denote
by 2! the transpose of z. Let T = zz*. Then we obtain a smooth map
Z: M™ — SM(m). Since the coordinates of Z depend on the coordinates
of = in a quadric manner, we call Z the quadric representation of M™ [3].
It is well known that for the hypersphere centered at the origin which is
embedded in the Euclidean space in the standard way, the quadric rep-
resentation is just the second standard immersion of the sphere. Then a
question arises naturally: To what extent does the quadric representation
of a submanifold in E™ determine the submanifold? This question has
attracted the interest of many mathematicians in this field and has been
answered partly [1], {3], {4], [5]. In [3], I. Dimitric established some gen-
eral results about the quadric representation, in particular those relative
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to the condition of Z being of finite type. In [5], the author gave some
results for hypersurfaces in E™ which satisfy AT = Bz + C with B and
C are two constant matrices. In this paper, we will study submanifolds
in E™ with parallel normal mean curvature vectors which satisfy the con-
dition AZ = BZ + C. Especially we prove that a 2-dimensional surface
with parallel mean curvature vector which satisfy AT = BZ + C must
be (a piece of) the 2-dimensional plane or (a piece of) the 2-dimensional
sphere centered at the origin.

2. Preliminaries

Let us fix the notation first. Let z : M™ — E™ be an isometric immer-
sion of an n-dimensional Riemannian manifold into the m-dimensional
Euclidean space (n < m). We denote by H the mean curvature vector of
M"in E™. Let ey,...,€,,€n41,--- ,€m be local orthonormal vector fields
along M™ such that e,,... ,e, are tangent to M", ep41,... ,en, are nor-
mal to M™, and e, is parallel to H. Then H = ae,.,, where « is the
mean curvature of M™ in E™. Let ( ,) and V be the Euclidean metric
and the connection of E™, and denote by V, h, D, A,, |A,| respectively,
the connection of M™, the second fundamental form of M™ in E™, the
normal connection of M™ in E™, the Weigarten endomorphism relative
to the normal direction e,, and the length of A,, r =n+1,--- ,m.

In this setting, the indices ¢, j, k always range from 1 to n, r, s, ¢ from
n+1 tom and 3, v from n+2 tom. At any point z € M™, for any column
vector V in E™, we denote by V7 = Y _.(V,e;)e;, Vv = > (V, &, )e;, and
Vi =2_5(Vieples.

We define a map * from E™x E™ into SM(m) by VW = VW!+WV?,
for column vectors V and W in E™. Then VW = W xV. Let V denotes
the Euclidean connection of SM(m), then we have

(2.1) Vy (W) % Wa) = (Vv Wh) * Wy + Wy x (Vy Wh),

(2.2) g(V1 * Vo, W1 x Wh)
= <‘/1)Wl)<‘/21 W2> + (I/laW2)<‘/2)W1>$

and
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(23) AV *W) = (AV)«x W +V x(AW) =2 (V. V) * (VW)

where V, W, W1, W, V; and V; are all vectors in E™, and A is the Lapla-
cian operator of M™[3].
Using (2.3), by a direct computation, we have

(2.4) AT = —nae, 1 *T — Z €; * €;,

and when a =0,

(2.5) N’F = 2|Api1 [ enst * eng1 — 2 Z(An+lei) * (Apt1€:).

Without noting, in this paper, we always denote by X, Y and Z the
tangent vector of M", by £ and 7 the normal vector of M™ in E™, and
V and W the column vector in E™.

3. Submanifolds with parallel mean normal curvature vector

THEOREM 3.1. Let z : M® — E™ be an isometric immersion with
parallel normal mean curvature vector. If its quadric representation sat-
isfles Ax = Bz + C, then A, 1217 = azr.

Proof. If a = 0, then (2.4) becomes AT = — . e; *e;. Since AT =
BZ + C, then A?Z = B(AZ). Applying g(~, e, * e,) to this relation and
summing on 7, we have Y, |A,|* = 0. Then M™ is a totally geodesic sub-
manifold of E™, that is to say that M™ is (a piece of ) the n-dimensional
Euclidean space. Moreover, we can easily check that the n-dimensional
Euclidean space does satisfy AT = BZ + C. In fact,

2
A% = —
0

In this case, it is obvious that A, ;27 = 0. Then A, ;127 = azy.
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Now we suppose a # 0. Since M™ has the parallel curvature vector in

E™, then De,; = 0. Differentiating AT = BZ+C along X, an arbitrary
tangent vector of M", we have

0= (BX)z' + (Bz) X' —na(A, 1 X) *x
(3.1) +nae, g x X +2 Z(A,X) xe, +nX(a)e,, 1 * 2.

Now we find the e,,; * ,,1 component of (3.1), that is

(3.2) ((BX, ens1) + 2nX(a)){z, en11) = 0.

Finding the e, * e, and e, * eg components of (3.1), respectively, we
have

(33) ((BX7 en+1> + 2nX(a))(z, ea) + (BX) ea> <$, en+1) = 0)
and
(3.4) (BX, e ){z,es) + (BX, es){z,e,) = 0.

Also, we need to find the e,,1 %Y and Y *Z components of (3.1), these
are

((BX,en1) + 2nX(a))(z,Y)
(3'5) + ((BX, Y) - 2na<An+1X, Y))(en+1,x>
+ (2na + (Bz, e, 1){(X,Y) +4(A, 1 X,Y) =0,

and

0=(BX,Y)(z,Z)+ (BX,Z)(z,Y)
(3.6) +(Bz, Z)(X,Y) — 2na(Ana X, Y){z, Z)
+(Bz,Y)(X, Z) — 2na{An1X, Z)(z,Y).

In (3.5), let X =Y = ¢; and sum on ¢, we obtain
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Be;, e; —2n%a? entt, L) + 2nzr(a
- (Z:( ) ) ) + 2nzr(a)

+ 2n(n + 2)0[ + TL(B.’IZ, en+1> + (B-'L'Ta en+1> =0.

But in (3.6), let Y = Z = ¢; and sum on %, we have

(38) <BX, (L‘T> + <B.’L', X> — 2na(An+1X, IL’T> =0.

From (3.2), we know that at any point £ € M", (e,;12) = 0 or
(BX, eny1)+2nX (o) = 0 holds. But from (3.4) we know that (BX)x =0
or £ = 0 holds. Thus, we discuss in the following three cases.

CASE 1. (e,;12) = 0 and zxy = 0. Then ¢ = zr and for any
tangent vector Y of M™,

0=Y{(eni1,2) = —(An1z,Y).
Thus A1z = 0. In this case, (3.5) and (3.7)become

0 = ((BX, ens1) + 20X (2))(z, Y)

(3.9) + (2na + (Bz, e, 1)){X,Y) + 4{A, 1 X,Y),
and
(3.10) (n+ 1){Bz,en1) + 2n(n + 2)a + 2nz(a) = 0.

In (3.9),let X =Y ==z, we have

(3.11) (Bz, €n41) + na + nx(a) = 0.
Combining (3.10) with (3.11), we obtain

n+3
n—1

(3.12) z(a) =

Q.
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Because of the arbitrariness of Y in (3.9), we have
0= ((BX, ens1) +2nX(a))z
+ ((Bz, ens1) + 2n0) X + 44, X.
But in (3.6), let X =Y = z, we obtain
(z,z){Bz,Z) = —(Bz,z){(z, Z).

(3.13)

Using the above relation and A, ,;z = 0, we have
(3.14) (Bz,Vxent1) = —(Bz, Apr1 X) = 0.
Then using (3.13) and (3.14), we can obtain
X{({(Bz,ens1) + 2na)z — 4en1} =0,

that is, ((Bz,en41) + 2na)z — 4e,,; is a constant vector. Then

(3.15) ({(Bz, ens1) + 2na)*{(z,z) = Cp,
where Cj is a constant. But from (3.10) and (3.12), we know

4n
—
Thus, (3.15) becomes o?(z,z) = C), where C; is also a constant. Dif-
ferentiating this formula along the tangent vector field z, we have that
alz, z)(z(a) + @) = 0. But (z,z) # 0 and a # 0, so z(a) + a = 0. This
is a contradiction with (3.12).

CASE 2. {(z,e,41) = 0 but z # 0. In this case, (BX)x = 0 and
from (3.3) we know that (BX,e,.,) +2nX(a) = 0. Then (3.5) and (3.7)
become

(Bz,eni1y + 2na = —

(3.16) ((Bz,eny1) +2na){(X,Y) + 4(A, 1 X,Y) =0,
and
(3.17) (Bz, en41) = —2(n + 2)c.
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Combining (3.16) with (3.17), we know that A,,; X = aX. Obviously,
we have A,z = azr.

CASE 3. (e,;1,z) # 0. In this case (BX,e,.1) + 2nX(a) = 0 and
from (3.3) we know that (BX)x = 0. Obviously zy # 0. Then (3.5) and
(3.7) become

=2na(A,1X,Y)(ens1, )
(3.18) +(2na + (Bz,e,1)){X,Y)
+4{A 1 X, Y) + (BX,Y)(z,en41) =0,

and

(BT, ens1) + 2n’a + 4na
(319) +(Z<Bei, e,'> - 2n2a2)<6n+1a -'13> =0.

7

From (3.18), we know that

(3.20) (BX,Y) = (X, BY).

Substituting Y = zr in (3.18), we have

0= —2na(A,1X,z)(en1, T)
(3.21) + (2na + (Bz,e,41)){X, x)
+ 4<An+1X) .’L') + <BX7 xT) <$7 en+1>'

Combining (3.8) with (3.21), we obtain that

((Bz, ent1) + 2na)(z, X)
- <$7 en+1><BI, X) + 4<A7H-1X7 'T> = O,

that is

(3.22) ((Bz, ept1) + 2na)xr — (z,e,41) (Bz)p + 4An 127 = 0.
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In (3.6), let X =Y = e; and sum on ¢, we have
(Z(Bei, e:) — 2n%a?®)(z, Z) + (Bzr, Z)
+ (n + 1){(Bz, Z) — 2na(An121,Z) = 0.
that is
(Z(Be,-, e;) — 2n*a®)zy

+ (Bzr)r + (n + 1)(Bz)r — 2naA, 1z = 0.
But from (3.20) and (3.8), we have that

(3.23)

(BX,z7) + (Bz, X) - 2na{An1.X,zr) = 0,
that is
(3.24) (Bz7)r + (Bz)r — 2naApazr = 0.
Combining (3.22) with (3.23) and (3.24), we know that

4nAnzr + {n(Bz,enqy) + 20’
+ (Z(Bei, e;) — 2n’a®){ens1,z) }zr = 0.

Using (3.19), the above relation becomes

Ann1Zr = o7,
Then the proof is complete.

4. Surfaces with parallel mean curvature vector

In this section, we will give a complete classification result on surfaces
with parallel mean curvature vector. To obtain the main result, we give

some lemmas first.

LEMMA 4.1. Let £ : M? — E™ be a full surface. Then there does
not exist a constant vector which is always normal to the tangent space

T.(M?) for any = € M>.
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We note that a surface M? of E™ is called full, if M? can not be
contained in any lower dimensional linear subspace of E™.

Proof. Suppose that there exists a constant vector X which is normal
to T,(M?), for any £ € M?. Then at any point z, differentiating (X, z)
along any tangent vector X, we have X (Xp,z) = 0. This means (X, z)
is constant, and M? is contained in the linear subspace

A={W € E™ (W, X,) = 0}.
This is a contradiction with that M? is full in E™. g

LEMMA 4.2. Let x : M? — E™ be a full surface, and B a constant
matrix of order m. If BX = \z)X, for any point £ € M? and X €
T,(M?), then B = MAl,,, where ) is a constant and I, is the identity
matrix of order m.

Proof. Let z; be any point in M2. From Lemma 4.1, we know that it
is impossible that T,(M?) = T,,(M?) always holds for all points z € M2.
On the other hand, if T,(M?) N T;,(M?) = {0} always holds for any
other point z(# z,) € M?, we choose a vector X; in Ty, (M?). Then Xj is
normal to T,(M?), for any other point z. This is a contradiction. Thus
there exists a point z2 in M2, such that T, (M2)NT,,(M?) = { X1}, where
X is a non-zero vector in E™. Since BX| = A(z1)X1 = A(z2) X}, we know

that A(z;) = A(z2). By induction, we can obtain z1, z, ... , Tp,-1 in M2,
such that E™ can be spanned linearly by vectors in UT;'T,,(M?) and
Az;) = -+ = MN&m_1). Obviously, BV = AV, for any V € E™, This
means B = A\I,,. O

LEMMA 4.3. Let z : M? — S™1(1) C E™ is an isometric immersion
with parallel mean curvature vector. If its quadric representation satisfies
AT = BT + C, then M? is (a piece of ) S%(1).

Proof. Let e1,€ez,€3,... ,€n-1 be a local field of orthonormal frames
of S™1(1), such that restricted to M?, e, e, are tangent to M? and
e3 is parallel to the mean curvature vector H' of M? in S™!(1). Let
H' = d’e;. we denote by A; and D’ the Weigartan endomorphism relative

toe,t=3,...,m— 1, and the normal connection of M? in S™ !(1).
Then 2H = 2H' + z and (2.4) becomes

AT = -2d'esxx — 2 *xx — E €; % €;.

i
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Differentiating AZ = BT + C along any tangent vector X and using the
above relation, we obtain

0= (BX)z'+ (Bz) X! - 2a(A}X) *x z
m—-1
+20/e3 % X +2) (A1X) x e, +6X xx.
t=3
Finding the z x z, £ * Y, e3 * Y and z * ¢, components of the above
relation respectively, we have

(4.1) (BX,z) =0,

(4.2) (BX,Y) = ((Bz,z) + 12){X,Y) — 6/ (A} X,Y),
(4.3) (Bz,es)(X,Y) + 40/ (X,Y) + 4(A:X,Y) =0,
and

(4.4) (BX,e;) =0, t=3,---m—1

From the above relations, we know that BX = A(z)X. Then by
Lemma 4.2, we have B = AI,,. That is AT = Az + C and we know
that M? must be (a piece of ) a sphere centered at the origin. The proof
is complete. O

THEOREM 4.1. Let z : M2 — E™ be a surface with parallel mean
curvature vector. If its quadric representation satisfies the condition
AT = BT + C, then M? is (a piece of ) a plane or a sphere centered at
the origin in E3.

Proof. From Theorem 3.1, we know that Aszr = axr holds.

If @ = 0, then M? is (a piece of ) a plane.

If o # 0 but z7 = 0, we know that M? is contained in the hypersphere
S™!(r). Since M? has parallel mean curvature vector, M? also has
parallel mean curvature vector in S™ !(r). Then from Lemma 4.3, we
know that M? is (a piece of ) a sphere centered at the origin.

If « # 0 and z7 # 0, then A; = af; and all formulas in Case 3 of
Theorem 3.1 hold. Combining (3.18) with A; = al,, we obtain

(BX,Y) = Mz)(X,Y),
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where A(z) = <c—;11—>{(Bx, e3) — 4a2(e3, ) + 8a}. Moreover, we know that
(BX)% =0 and (BX,e3) = 0. Then BX = A(z)X holds for any z € M?
and X € T,(M?). By Lemma 4.3, we know that B = A, where X is a

constant. On the other hand,
AX{(z,z) = X(Bz,z)
(BX,z) + (Bz, X)
40X, X) = 22° X (z, 2),

here we used (3.24) and A, 127 = azr. Then we have (A —222)(X, z) =
0. Since zr # 0, we know that A = 20?. Substituting B = 20?1, and
X = zr in (3.18), we obtain a = 0. But we assume that a # 0. This is a
contradiction. The proof is complete. d
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