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A COMPACTNESS RESULT FOR A SET
OF SUBSET-SUM-DISTINCT SEQUENCES

JAEGUG BAE

ABSTRACT. In this paper we obtain a “compactness” result that
asserts the existence, in certain sets of sequences, of a sequence which
has a maximal reciprocal sum. We derive this result from a much
more general theorem which will be proved by introducing a metric
into the set of sequences and using a topological argument.

1. Introduction

A subset-sum-distinct set of integers is one in which each subset is
uniquely determined by its sum. It is intuitively reasonable that such
a set must be rather “sparse”. In fact, problems related to density of a
subset-sum-distinct set have been considered by many mathematicians
in various contexts (see [1, pp.47-48], [3], [4], [5], [6], [7], [9], [10], [11,
pp. 59-60], [12, p. 114, problem C8], [13], [14], [15]). Some of them ([2],
(3], [6], [14]) involved, for a set C of subset-sum-distinct sequences
{an}22;, the supremum of

<] oo
1 1
-—_ or E 3
n=1 n n=1 an

and the determination of an extremal sequence which obtains the supre-
mum. The purpose of this paper is to establish the existence of such
an extremal sequence for a quite general set C of subset-sum-distinct
sequences by means of topological arguments. One of the most interest-
ing examples of such C is the set of all subset-sum-distinct sequences
such that no subset sum is congruent to a modulo ¢ which is dealt in
detail in [2]. To be more precise, we begin with our notation and some
formal definitions.
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DEFINITION 1.1. .
We denote the set of all positive integers by N and N = NuU{oo}

with the convention that, for any real number r,

T
r < 00, —=0.
00

We define
W = {(a1,a2,a3,---) : a; € N},
1= {(al,az,a;;,"') EW :q; < Ai41 and a; < Aiy1 if a1 < OO}

and denote elements of W by {a;,a2,as,---} instead of (ay,a2,
az,---).

DEFINITION 1.2.

For a sequence a = {an}o; €Z,

(L.1) rs(a)=% 51_ .
n=1 "

We call this the reciprocal sum of a.

Let C CZI. A sequence m in C is called a maximal sequence
of C if rs(m) = sup{rs(a) : a € C}. We denote the set of all
maximal sequences of C by M(C).

Let A be a set of real numbers. We say that A is a subset-sum-
distinct set (briefly, A is an SSD-set or A is SSD) if for any two
finite subsets X, Y of A,

szZy implies X=Y.

Also, we say that a sequence {a,}22, € T is an SSD-sequence if
NN{a, : n € N} is SSD. We denote the set of all SSD-sequences by
S. Note that ¢ is SSD and the sequence {00,00,00,---} € S.
For 1 <a<gq, S(a,q) denotes the set of all SSD-sequences such
that no subset-sum is congruent to a modulo ¢. In other words,
{an}2; € S(a,q) if and only if

{an}s2; €8S and Zai # a (mod q)

iel

for any subset I of the positive intergers.

We now introduce a metric into W by means of a metricon N.
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A compactness result for a set of subset-sum-distinct sequences

LEMMA 1.3. Let n € N be fixed. For any z,y € N, define

Then (N, dn) is a metric space. Furthermore, any subset of N is
openin N. -

Proof. Obviously d,, defines a metric on N. For the second claim
of the lemma, we show that, for any a € N,

. 1 . a a
(12) Ba,(e,0) = {a} if f<az'm‘“{1‘m’g_—1‘1}'

If b€ N and a#b, then

Therefore we have (1.2). O

THEOREM 1.4. For any two sequences a = {an}ne; , b= {bn}or,
in W, let

p(a,b) = sup {dn(an,bn) :n=1,2,3,---}.

Then p metrizes the cartesian product topology of W.
Proof. See {8, p.190, Theorem 7.2 (2)]. O

After preliminary results in the next section, we will establish the
compactness of W, 7, S and show that M(C), especially M(S
(a,q)), is nonempty for any closed subset C of S in the third section.
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2. An upper bound for } ., 1/a,

In this section, we prove theorems about upper bounds, in terms of
a1, for 302 1/a, where {an}3; € S. These results will also be
of use in the next section. We begin with two lemmas.

LEMMA 2.1. Let {ai,agz, - ,an} be an SSD-set of positive inte-
gers. Then
aytag+---+ap, > 2" —1.

Proof. Let A={a1,az, - ,an} and J = {3 ,.5b: ¢#BcCA}.
We claim that |J| =2" ~1. Since A is an SSD-set, we obtain

B,B'CA and B#B'  imply ) b# ) ¥
beB beB’

from which the claim follows. Because a;+as+---+a, isthe greatest
element in J and J C N, we have the lemma.

LEMMA 2.2. Let {b1,bs,b3, - ,b;n} be SSD. Then also the set
A:={K+b,K+by,K+bs, - ,K+bp}

isSSDif K>by+by+---+b,

Proof. Suppose that A is not SSD. Then there are two distinct sub-
sets I, J of {1,2,3,---,m} suchthat } ;. (K+b) = YK+
b;). Since {b1,b2, - ,bn} is SSD, we have |I| # |J|. So, we may
assume that |J| > |I]. But then we have

K< (J-UDK =) b;=> b < bi+by+-+bm < K,
tel i€J

a contradiction. g

THEOREM 2.3. Let a= {an},o; €S and a; >1. Then
i 1 loga1
n— an ay

where C is an absolute constant.
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Proof. Let by = agr — agk—1 for k =1,2,3,4,---. Since the se-
quence a is SSD, the set {by,bo,bs,---} is SSD also. Now, we claim
that

(2.1) k+1 = a1+by+bo+ .-+ by, k=1,2,3,---.

We use induction on k. Since, by definition, b; = as — a1, we have
az = aj + by which satisfies the claim (2.1) for k£ = 1. Now assume
that

agk+1 > a1 +bi+bo+ -+ by

By deﬁnition, bk+1 = Q2k+2 — A2k+1 and so a2k+2 = A2k+1 -+ bk+1 .
Thus

A2k+3 = Q2k4+2 = Q2k+1 +bky1 > ar+by1 +ba+ -+ b + b

and this completes the proof of the claim (2.1). Applying Lemma 2.1 to
the set {b1,be,bs,---brx}, weobtain agxyy1 > a;+by+by+---+byp >
a1 +2 -1 for k=0,1,2,3,--- . Therefore we have

=Y () <2

a a
o \G2k+1 2k+2 P

2§: 1 < 3+2 /00 1 dz
k=0a1+2"—1 T oa o a1+2¢-1

a2k—+—1

IN

_ 2 + 2 loga1 < C'logal
log 2 a; —1 ay
for some absolute constant C'. O

REMARK. We interpret (logaj)/a; = 0 when a; = oo. Also,

note that
ai 3 + 2 log ay
loga; a1  log2 a; —1

is a decreasing function of a;, so we may take C = 6/log2.

Next, we show that the inequality in Theorem 2.3 is essentially best
possible in the following sense:
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THEOREM 2.4. Let f(z) be a positive real valued function that is
defined on (1,00) such that

(2.2) #(2) / gz _,

as ¢ — oo. Then for any K >0, there exists {an}>2, € S such
that

o0

1
a; > 1 and Z— > K- f(a1).
n=1 "
Proof. For sequences a(l), a(2), a(3), --- in S, we use the nota-

tions
a(m) = {amn}or, for m=1,2,3,---

We are to construct a(m) so that am > 1, a(m) € § for m =

1,2,3,--- and
oy Z

as m — oo. Clearly {1,2,22 ... 2™"1} is SSD. Applying Lemma
2.2 with K = 2™, we obtain the SSD property of the set

amn

{2m +1,2m +2,2m 422 ... o™ 4 2mT1},
Now, for a given positive integer m, we define

2m42nl if 1<n<m

Qmn =
2Zami, if n>m.

From the construction, obviously am; > 1, a(m) € S for all m.
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Also, we have

1 21
f(aml) Za

n=1 mn

1 =1
> T 2

m

1 1
flam1) %= am + on—1 _1

1 m-1 1
> — —dx
- f(aml) /; Ay + 25 —1
_ 1 1  loga,,; —log3
flam1) log2 am1 — 1
> ¢ 1 log a1

. f (a'ml) . Am1
for some positive constant C and for m > 1. Thus the theorem
follows from (2.2) since am; = 2™+1 — 00 as m — 0. O

3. A compactness result

THEOREM 3.1. (W, p) is a compact space.

Proof. Since every infinite subset of (N,d,) has oo as a limit
point, (N,d,,) is limit point compact (see [16, p. 178]) forany n € N.
Note that the compactness is equivalent to the limit point compactness
in a metric space (see [16, p.181, Theorem 7.4]). Hence (N,d,) is
compact for all n € N. Applying the Tychonoff Theorem with Theo-
rem 1.4, we conclude that (W, p) is compact. d

Now, we show the compactness of 7 and S. We need the following
two lemmas.

LEMMA 3.2. Let x = {z,}32, € W. Then for any positive integer
m, there exist € > 0 such that a = {an}32, € B,(x,¢) implies that,
forall ne€{1,2,--- ,m},

Qn =%, if T, <00 and a,>m if z, =.
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Proof. By the definition of p, a = {a,}32; € B,(x,€) implies
that dnp(an,zn) < € for all n € N. Thus we have the conclusion by
(1.2) of Lemma 1.3. O

LEMMA 3.3. Let CCZ. Then C is closed if and only if it has the
following property: for any sequence x = {z,}2, € Z, C contains
x if, for any positive integer m, we can find c(m) = {emn}SL,
(depending on m) in C such that

n € {1,2,.--- ,m} implies
(3.1) . .
Cmn =Zn If T, <00 and ¢y, >m if T, =00.

Proof. (Sufficiency): Assume that C is closed and x = {z,}52, €
T and for each m there is c(m) = {¢mn}32; € C such that (3.1) is
true. Then since

1 1

< <
dn(Cmn, Tn) < Nemn ~ n(m+1)

for 1<n<m and sup{di(cmn,zn):n>m+1} <1/(m+1), we

have
1

m+1°

ple(m),x) = sup{dn(cmn,zn) :n>1} <

Thus x is a limit point of C, andso x€C.

(Necessity): Let x = {z,}32; € T be a limit point of C. Then, for
any € >0, B,(x,e)NC is nonempty. Hence, by Lemma 3.2, there is
c(m) = {cmn}32; such that (3.1) holds for each positive integer m.
Thus x € C which means C is closed in T. O

THEOREM 3.4. 7 is compact in W.

Proof. Let x = {z,}52, € W be a limit point of Z. Then, for
any € > 0, there exist a = {a,}32; € B,(x,¢) NZ. Suppose that
x ¢ Z. Then we can find a positive integer k such that

(3.2) Tk > Tkl O T = Ty < O0.
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If zx < oo, then apply Lemma 3.2 with m > k to find € so that
ar =Tx and agiy1 = Ty1. Since a € T we have zp = ap < A1 =
Zr+1 which contradicts (3.2). If zx = oo, then apply Lemma 3.2 with
m > Zm41 to find € so that ax > m > xx4+1 and agy1 = Tes1-
Again we have zp4+1 < m < a < ag41 = Ty Which is impossible.
Hence we may conclude x € T and so Z is closed in W. Now the
theorem follows since W is compact by Theorem 3.1. O

THEOREM 3.5. S is compactin W.

Proof. By Lemma 3.3, S is closed in Z. Hence the proof follows
immediately from Theorem 3.1 and 3.4. 0

THEOREM 3.6. Let R be the set of all real numbers with the usual
topology. Then the function

rs: S— R

defined by (1.1) in Definition 1.2 (i) is continuous.
Proof. Let € be given. We are supposed to find § > 0 such that

x € B,(a,0) NS implies |rs(a) —rs(x)| < e.
Take a positive integer m large enough so that

logm

(3.3) 3C- < €

where C is the constant of Theorem 2.3. By Lemma 3.2, there exists
d > 0 such that, if x € B,(a,d)NS, then forall ne {1,2,--- ,m},

(3.4) on=2, if ap <00 and z,>m if a, = oc.

Let I={ieN:1<i<m, a; =00} and iy the smallest element
of I if I is nonempty. By (3.4) and Theorem 2.3, we have

m

(3.5) >

n=1

1 1

Qn Tn

_ Z_l_ < C.10g1131'0 < C.logm'
el T Tio m
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Apply Theorem 2.3 again with the fact that a,, > m and z,, > m
to obtain

21 loga logm
Y= <o 2Bim o 2B
= an am m
(3.6)
21 log Z, logm
E — < C- < C- .
n—= n zm m

Thus, combining (3.3), (3.5), and (3.6), we have

21 1
rs(a) —rs(x)| < _——
rata) ~ra(al < 3|2 - o
1 1 2|1 1
<§ = = R
- an mn+zan Zn

3
I
P
S

|
3

M=

<

1 1 1K1
a—aTn'%'Za—'i—Zase.

THEOREM 3.7. If C is closed in S, then M(C) is nonempty.

Proof. By Theorem 3.5 and Theorem 3.6, rs(C) is compactin R,
the set of all real numbers. Hence M(C) is nonempty. a

3
I
3

|
3
3

|
3
(|

COROLLARY 3.8. M(S(a,q)) is nonempty.
Proof. By Lemma 3.3, it is obvious that S(a,q) is closed. Thus the
corollary follows from Theorem 3.7. a
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