A COMPACTNESS RESULT FOR A SET OF SUBSET-SUM-DISTINCT SEQUENCES

JAEGUG BAE

ABSTRACT. In this paper we obtain a "compactness" result that asserts the existence, in certain sets of sequences, of a sequence which has a maximal reciprocal sum. We derive this result from a much more general theorem which will be proved by introducing a metric into the set of sequences and using a topological argument.

1. Introduction

A subset-sum-distinct set of integers is one in which each subset is uniquely determined by its sum. It is intuitively reasonable that such a set must be rather "sparse". In fact, problems related to density of a subset-sum-distinct set have been considered by many mathematicians in various contexts (see [1, pp. 47-48], [3], [4], [5], [6], [7], [9], [10], [11, pp. 59-60], [12, p. 114, problem C8], [13], [14], [15]). Some of them ([2], [3], [6], [14]) involved, for a set \mathcal{C} of subset-sum-distinct sequences $\{a_n\}_{n=1}^{\infty}$, the supremum of

$$\sum_{n=1}^{\infty} \frac{1}{a_n} \quad \text{or} \quad \sum_{n=1}^{\infty} \frac{1}{a_n^s}$$

and the determination of an extremal sequence which obtains the supremum. The purpose of this paper is to establish the existence of such an extremal sequence for a quite general set $\mathcal C$ of subset-sum-distinct sequences by means of topological arguments. One of the most interesting examples of such $\mathcal C$ is the set of all subset-sum-distinct sequences such that no subset sum is congruent to a modulo q which is dealt in detail in [2]. To be more precise, we begin with our notation and some formal definitions.

Received November 4, 1997.

¹⁹⁹¹ Mathematics Subject Classification: Primary 11B13; Secondary 11B05.

Key words and phrases: compact, metric space, subset sum distinct set.

DEFINITION 1.1.

(i) We denote the set of all positive integers by N and $\overline{N} = N \cup \{\infty\}$ with the convention that, for any real number r,

$$r < \infty$$
, $\frac{r}{\infty} = 0$.

(ii) We define

$$\mathcal{W} = \{(a_1, a_2, a_3, \cdots) : a_i \in \overline{\mathbf{N}}\},\$$
 $\mathcal{I} = \{(a_1, a_2, a_3, \cdots) \in \mathcal{W} : a_i \leq a_{i+1} \text{ and } a_i < a_{i+1} \text{ if } a_{i+1} < \infty\}$
and denote elements of \mathcal{W} by $\{a_1, a_2, a_3, \cdots\}$ instead of (a_1, a_2, a_3, \cdots) .

Definition 1.2.

(i) For a sequence $\mathbf{a} = \{a_n\}_{n=1}^{\infty} \in \mathcal{I}$,

(1.1)
$$rs(\mathbf{a}) = \sum_{n=1}^{\infty} \frac{1}{a_n}.$$

We call this the reciprocal sum of a.

- (ii) Let $C \subseteq \mathcal{I}$. A sequence \mathbf{m} in C is called a maximal sequence of C if $rs(\mathbf{m}) = \sup\{rs(\mathbf{a}) : \mathbf{a} \in C\}$. We denote the set of all maximal sequences of C by $\mathcal{M}(C)$.
- (iii) Let A be a set of real numbers. We say that A is a subset-sum-distinct set (briefly, A is an SSD-set or A is SSD) if for any two finite subsets X, Y of A,

$$\sum_{x \in X} x = \sum_{y \in Y} y \quad \text{implies} \quad X = Y.$$

Also, we say that a sequence $\{a_n\}_{n=1}^{\infty} \in \mathcal{I}$ is an SSD-sequence if $\mathbb{N} \cap \{a_n : n \in \mathbb{N}\}$ is SSD. We denote the set of all SSD-sequences by \mathcal{S} . Note that ϕ is SSD and the sequence $\{\infty, \infty, \infty, \cdots\} \in \mathcal{S}$.

(iv) For $1 \leq a < q$, $\mathcal{S}(a,q)$ denotes the set of all SSD-sequences such that no subset-sum is congruent to a modulo q. In other words, $\{a_n\}_{n=1}^{\infty} \in \mathcal{S}(a,q)$ if and only if

$$\{a_n\}_{n=1}^{\infty} \in \mathcal{S} \quad ext{ and } \quad \sum_{i \in I} a_i \not\equiv a \pmod{q}$$

for any subset I of the positive intergers.

We now introduce a metric into \mathcal{W} by means of a metric on $\overline{\mathbf{N}}$.

A compactness result for a set of subset-sum-distinct sequences

LEMMA 1.3. Let $n \in \mathbb{N}$ be fixed. For any $x, y \in \overline{\mathbb{N}}$, define

$$d_n(x,y) = rac{1}{n} \cdot \left| rac{1}{x} - rac{1}{y}
ight|.$$

Then $(\overline{\mathbf{N}}, d_n)$ is a metric space. Furthermore, any subset of \mathbf{N} is open in $\overline{\mathbf{N}}$.

Proof. Obviously d_n defines a metric on $\overline{\mathbf{N}}$. For the second claim of the lemma, we show that, for any $a \in \mathbf{N}$,

$$(1.2) \quad B_{d_n}(a,\epsilon) = \{a\} \quad \text{if} \quad \epsilon < \frac{1}{na} \cdot \min \left\{ 1 - \frac{a}{a+1}, \ \frac{a}{a-1} - 1 \right\} \ .$$

If $b \in \overline{\mathbb{N}}$ and $a \neq b$, then

$$n d_n(a,b) = \left| \frac{1}{a} - \frac{1}{b} \right| = \begin{cases} \frac{1}{a} \left(1 - \frac{a}{b} \right) \ge \frac{1}{a} \left(1 - \frac{a}{a+1} \right), & \text{if } a < b \\ \frac{1}{a} \left(\frac{a}{b} - 1 \right) \ge \frac{1}{a} \left(\frac{a}{a-1} - 1 \right), & \text{if } a > b. \end{cases}$$

Therefore we have (1.2).

THEOREM 1.4. For any two sequences $\mathbf{a} = \{a_n\}_{n=1}^{\infty}$, $\mathbf{b} = \{b_n\}_{n=1}^{\infty}$ in \mathcal{W} , let

$$\rho(\mathbf{a}, \mathbf{b}) = \sup \{d_n(a_n, b_n) : n = 1, 2, 3, \dots\}.$$

Then ρ metrizes the cartesian product topology of W.

After preliminary results in the next section, we will establish the compactness of W, \mathcal{I} , \mathcal{S} and show that $\mathcal{M}(\mathcal{C})$, especially $\mathcal{M}(\mathcal{S}(a,q))$, is nonempty for any closed subset \mathcal{C} of \mathcal{S} in the third section.

2. An upper bound for $\sum_{n=1}^{\infty} 1/a_n$

In this section, we prove theorems about upper bounds, in terms of a_1 , for $\sum_{n=1}^{\infty} 1/a_n$ where $\{a_n\}_{n=1}^{\infty} \in \mathcal{S}$. These results will also be of use in the next section. We begin with two lemmas.

LEMMA 2.1. Let $\{a_1, a_2, \dots, a_n\}$ be an SSD-set of positive integers. Then

$$a_1+a_2+\cdots+a_n \geq 2^n-1.$$

Proof. Let $A=\{a_1,a_2,\cdots,a_n\}$ and $J=\{\sum_{b\in B}b:\phi\neq B\subset A\}$. We claim that $|J|=2^n-1$. Since A is an SSD-set, we obtain

$$B,B'\subset A \quad \text{and} \quad B\neq B' \qquad \text{imply} \qquad \sum_{b\in B}b\neq \sum_{b'\in B'}b'$$

from which the claim follows. Because $a_1 + a_2 + \cdots + a_n$ is the greatest element in J and $J \subseteq \mathbb{N}$, we have the lemma.

LEMMA 2.2. Let $\{b_1, b_2, b_3, \dots, b_m\}$ be SSD. Then also the set

$$A := \{K + b_1, K + b_2, K + b_3, \cdots, K + b_m\}$$

is SSD if $K > b_1 + b_2 + \cdots + b_m$.

Proof. Suppose that A is not SSD. Then there are two distinct subsets I, J of $\{1, 2, 3, \dots, m\}$ such that $\sum_{i \in I} (K + b_i) = \sum_{j \in J} (K + b_j)$. Since $\{b_1, b_2, \dots, b_m\}$ is SSD, we have $|I| \neq |J|$. So, we may assume that |J| > |I|. But then we have

$$K \leq (|J| - |I|) K = \sum_{i \in I} b_i - \sum_{j \in J} b_j \leq b_1 + b_2 + \cdots + b_m < K,$$

a contradiction. \Box

THEOREM 2.3. Let $\mathbf{a} = \{a_n\}_{n=1}^{\infty} \in \mathcal{S} \text{ and } a_1 > 1$. Then

$$\sum_{n=1}^{\infty} \frac{1}{a_n} \leq C \cdot \frac{\log a_1}{a_1}$$

where C is an absolute constant.

A compactness result for a set of subset-sum-distinct sequences

Proof. Let $b_k = a_{2k} - a_{2k-1}$ for $k = 1, 2, 3, 4, \cdots$. Since the sequence **a** is SSD, the set $\{b_1, b_2, b_3, \cdots\}$ is SSD also. Now, we claim that

$$(2.1) a_{2k+1} \geq a_1 + b_1 + b_2 + \cdots + b_k, k = 1, 2, 3, \cdots.$$

We use induction on k. Since, by definition, $b_1 = a_2 - a_1$, we have $a_2 = a_1 + b_1$ which satisfies the claim (2.1) for k = 1. Now assume that

$$a_{2k+1} \geq a_1 + b_1 + b_2 + \cdots + b_k$$
.

By definition, $b_{k+1} = a_{2k+2} - a_{2k+1}$, and so $a_{2k+2} = a_{2k+1} + b_{k+1}$. Thus

$$a_{2k+3} \geq a_{2k+2} = a_{2k+1} + b_{k+1} \geq a_1 + b_1 + b_2 + \dots + b_k + b_{k+1}$$

and this completes the proof of the claim (2.1). Applying Lemma 2.1 to the set $\{b_1, b_2, b_3, \dots b_k\}$, we obtain $a_{2k+1} \geq a_1 + b_1 + b_2 + \dots + b_k \geq a_1 + 2^k - 1$ for $k = 0, 1, 2, 3, \dots$. Therefore we have

$$\sum_{n=1}^{\infty} \frac{1}{a_n} = \sum_{k=0}^{\infty} \left(\frac{1}{a_{2k+1}} + \frac{1}{a_{2k+2}} \right) \le 2 \sum_{k=0}^{\infty} \frac{1}{a_{2k+1}}$$

$$\le 2 \sum_{k=0}^{\infty} \frac{1}{a_1 + 2^k - 1} \le \frac{2}{a_1} + 2 \cdot \int_0^{\infty} \frac{1}{a_1 + 2^x - 1} dx$$

$$= \frac{2}{a_1} + \frac{2}{\log 2} \cdot \frac{\log a_1}{a_1 - 1} \le C \cdot \frac{\log a_1}{a_1}$$

for some absolute constant C.

Remark. We interpret $(\log a_1)/a_1=0$ when $a_1=\infty$. Also, note that

$$\frac{a_1}{\log a_1} \left\{ \frac{2}{a_1} + \frac{2}{\log 2} \cdot \frac{\log a_1}{a_1 - 1} \right\}$$

is a decreasing function of a_1 , so we may take $C = 6/\log 2$.

Next, we show that the inequality in Theorem 2.3 is essentially best possible in the following sense:

Jaegug Bae

THEOREM 2.4. Let f(x) be a positive real valued function that is defined on $(1, \infty)$ such that

$$(2.2) f(x) / \frac{\log x}{x} \longrightarrow 0$$

as $x \to \infty$. Then for any K > 0, there exists $\{a_n\}_{n=1}^{\infty} \in \mathcal{S}$ such that

$$a_1 > 1$$
 and $\sum_{n=1}^{\infty} \frac{1}{a_n} > K \cdot f(a_1)$.

Proof. For sequences $\mathbf{a}(1)$, $\mathbf{a}(2)$, $\mathbf{a}(3)$, \cdots in \mathcal{S} , we use the notations

$$\mathbf{a}(m) = \{a_{mn}\}_{n=1}^{\infty} \text{ for } m = 1, 2, 3, \cdots.$$

We are to construct $\mathbf{a}(m)$ so that $a_{m1} > 1$, $\mathbf{a}(m) \in \mathcal{S}$ for $m = 1, 2, 3, \cdots$ and

$$\frac{1}{f(a_{m1})} \sum_{n=1}^{\infty} \frac{1}{a_{mn}} \longrightarrow \infty$$

as $m\to\infty$. Clearly $\{1,2,2^2,\cdots,2^{m-1}\}$ is SSD. Applying Lemma 2.2 with $K=2^m$, we obtain the SSD property of the set

$${2^m+1, 2^m+2, 2^m+2^2, \cdots, 2^m+2^{m-1}}$$
.

Now, for a given positive integer m, we define

$$a_{mn} = \begin{cases} 2^m + 2^{n-1}, & \text{if } 1 \le n \le m \\ 2\sum_{i=1}^{n-1} a_{mi}, & \text{if } n > m. \end{cases}$$

From the construction, obviously $a_{m1} > 1$, $\mathbf{a}(m) \in \mathcal{S}$ for all m.

A compactness result for a set of subset-sum-distinct sequences

Also, we have

$$\frac{1}{f(a_{m1})} \sum_{n=1}^{\infty} \frac{1}{a_{mn}} \ge \frac{1}{f(a_{m1})} \sum_{n=1}^{m} \frac{1}{a_{mn}}$$

$$= \frac{1}{f(a_{m1})} \sum_{n=1}^{m} \frac{1}{a_{m1} + 2^{n-1} - 1}$$

$$\ge \frac{1}{f(a_{m1})} \int_{0}^{m-1} \frac{1}{a_{m1} + 2^{x} - 1} dx$$

$$= \frac{1}{f(a_{m1})} \cdot \frac{1}{\log 2} \cdot \frac{\log a_{m1} - \log 3}{a_{m1} - 1}$$

$$\ge C \cdot \frac{1}{f(a_{m1})} \cdot \frac{\log a_{m1}}{a_{m1}}$$

for some positive constant C and for m > 1. Thus the theorem follows from (2.2) since $a_{m1} = 2^m + 1 \to \infty$ as $m \to \infty$.

3. A compactness result

THEOREM 3.1. (W, ρ) is a compact space.

Proof. Since every infinite subset of $(\overline{\mathbf{N}}, d_n)$ has ∞ as a limit point, $(\overline{\mathbf{N}}, d_n)$ is limit point compact (see [16, p. 178]) for any $n \in \mathbf{N}$. Note that the compactness is equivalent to the limit point compactness in a metric space (see [16, p. 181, Theorem 7.4]). Hence $(\overline{\mathbf{N}}, d_n)$ is compact for all $n \in \mathbf{N}$. Applying the Tychonoff Theorem with Theorem 1.4, we conclude that (\mathcal{W}, ρ) is compact.

Now, we show the compactness of \mathcal{I} and \mathcal{S} . We need the following two lemmas.

LEMMA 3.2. Let $\mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \mathcal{W}$. Then for any positive integer m, there exist $\epsilon > 0$ such that $\mathbf{a} = \{a_n\}_{n=1}^{\infty} \in B_{\rho}(\mathbf{x}, \epsilon)$ implies that, for all $n \in \{1, 2, \dots, m\}$,

$$a_n = x_n$$
 if $x_n < \infty$ and $a_n > m$ if $x_n = \infty$.

Jaegug Bae

Proof. By the definition of ρ , $\mathbf{a} = \{a_n\}_{n=1}^{\infty} \in B_{\rho}(\mathbf{x}, \epsilon)$ implies that $d_n(a_n, x_n) < \epsilon$ for all $n \in \mathbb{N}$. Thus we have the conclusion by (1.2) of Lemma 1.3.

LEMMA 3.3. Let $C \subseteq \mathcal{I}$. Then C is closed if and only if it has the following property: for any sequence $\mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \mathcal{I}$, C contains \mathbf{x} if, for any positive integer m, we can find $\mathbf{c}(m) = \{c_{mn}\}_{n=1}^{\infty}$ (depending on m) in C such that

(3.1)
$$n \in \{1, 2, \cdots, m\} \text{ implies}$$

$$c_{mn} = x_n \text{ if } x_n < \infty \text{ and } c_{mn} > m \text{ if } x_n = \infty.$$

Proof. (Sufficiency): Assume that \mathcal{C} is closed and $\mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \mathcal{I}$ and for each m there is $\mathbf{c}(m) = \{c_{mn}\}_{n=1}^{\infty} \in \mathcal{C}$ such that (3.1) is true. Then since

$$d_n(c_{mn}, x_n) \leq \frac{1}{n c_{mn}} \leq \frac{1}{n(m+1)}$$

for $1 \le n \le m$ and $\sup \{d_n(c_{mn}, x_n) : n \ge m+1\} \le 1/(m+1)$, we have

$$\rho(\mathbf{c}(m), \mathbf{x}) = \sup \{d_n(c_{mn}, x_n) : n \ge 1\} \le \frac{1}{m+1}.$$

Thus \mathbf{x} is a limit point of \mathcal{C} , and so $\mathbf{x} \in \mathcal{C}$.

(Necessity): Let $\mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \mathcal{I}$ be a limit point of \mathcal{C} . Then, for any $\epsilon > 0$, $B_{\rho}(\mathbf{x}, \epsilon) \cap \mathcal{C}$ is nonempty. Hence, by Lemma 3.2, there is $\mathbf{c}(m) = \{c_{mn}\}_{n=1}^{\infty}$ such that (3.1) holds for each positive integer m. Thus $\mathbf{x} \in \mathcal{C}$ which means \mathcal{C} is closed in \mathcal{I} .

Theorem 3.4. \mathcal{I} is compact in \mathcal{W} .

Proof. Let $\mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \mathcal{W}$ be a limit point of \mathcal{I} . Then, for any $\epsilon > 0$, there exist $\mathbf{a} = \{a_n\}_{n=1}^{\infty} \in B_{\rho}(\mathbf{x}, \epsilon) \cap \mathcal{I}$. Suppose that $\mathbf{x} \notin \mathcal{I}$. Then we can find a positive integer k such that

$$(3.2) x_k > x_{k+1} or x_k = x_{k+1} < \infty.$$

If $x_k < \infty$, then apply Lemma 3.2 with m > k to find ϵ so that $a_k = x_k$ and $a_{k+1} = x_{k+1}$. Since $\mathbf{a} \in \mathcal{I}$ we have $x_k = a_k < a_{k+1} = x_{k+1}$ which contradicts (3.2). If $x_k = \infty$, then apply Lemma 3.2 with $m > x_{m+1}$ to find ϵ so that $a_k > m > x_{k+1}$ and $a_{k+1} = x_{k+1}$. Again we have $x_{k+1} < m < a_k \le a_{k+1} = x_{k+1}$ which is impossible. Hence we may conclude $\mathbf{x} \in \mathcal{I}$ and so \mathcal{I} is closed in \mathcal{W} . Now the theorem follows since \mathcal{W} is compact by Theorem 3.1.

Theorem 3.5. S is compact in W.

Proof. By Lemma 3.3, S is closed in I. Hence the proof follows immediately from Theorem 3.1 and 3.4.

THEOREM 3.6. Let **R** be the set of all real numbers with the usual topology. Then the function

$$rs: \mathcal{S} \longrightarrow \mathbf{R}$$

defined by (1.1) in Definition 1.2 (i) is continuous.

Proof. Let ϵ be given. We are supposed to find $\delta > 0$ such that

$$\mathbf{x} \in B_{\rho}(\mathbf{a}, \delta) \cap \mathcal{S}$$
 implies $|rs(\mathbf{a}) - rs(\mathbf{x})| < \epsilon$.

Take a positive integer m large enough so that

$$(3.3) 3C \cdot \frac{\log m}{m} < \epsilon$$

where C is the constant of Theorem 2.3. By Lemma 3.2, there exists $\delta > 0$ such that, if $\mathbf{x} \in B_{\rho}(\mathbf{a}, \delta) \cap \mathcal{S}$, then for all $n \in \{1, 2, \dots, m\}$,

(3.4)
$$a_n = x_n \text{ if } a_n < \infty \text{ and } x_n > m \text{ if } a_n = \infty.$$

Let $I = \{i \in \mathbb{N} : 1 \le i \le m, a_i = \infty\}$ and i_0 the smallest element of I if I is nonempty. By (3.4) and Theorem 2.3, we have

$$(3.5) \qquad \sum_{n=1}^{m} \left| \frac{1}{a_n} - \frac{1}{x_n} \right| = \sum_{i \in I} \frac{1}{x_i} \le C \cdot \frac{\log x_{i_0}}{x_{i_0}} \le C \cdot \frac{\log m}{m}.$$

Apply Theorem 2.3 again with the fact that $a_m \geq m$ and $x_m \geq m$ to obtain

(3.6)
$$\sum_{n=m}^{\infty} \frac{1}{a_n} \leq C \cdot \frac{\log a_m}{a_m} \leq C \cdot \frac{\log m}{m},$$
$$\sum_{n=m}^{\infty} \frac{1}{x_n} \leq C \cdot \frac{\log x_m}{x_m} \leq C \cdot \frac{\log m}{m}.$$

Thus, combining (3.3), (3.5), and (3.6), we have

$$|rs(\mathbf{a}) - rs(\mathbf{x})| \leq \sum_{n=1}^{\infty} \left| \frac{1}{a_n} - \frac{1}{x_n} \right|$$

$$\leq \sum_{n=1}^{m} \left| \frac{1}{a_n} - \frac{1}{x_n} \right| + \sum_{n=m}^{\infty} \left| \frac{1}{a_n} - \frac{1}{x_n} \right|$$

$$\leq \sum_{n=1}^{m} \left| \frac{1}{a_n} - \frac{1}{x_n} \right| + \sum_{n=m}^{\infty} \frac{1}{a_n} + \sum_{n=m}^{\infty} \frac{1}{x_n} \leq \epsilon.$$

THEOREM 3.7. If C is closed in S, then $\mathcal{M}(C)$ is nonempty.

Proof. By Theorem 3.5 and Theorem 3.6, $rs(\mathcal{C})$ is compact in \mathbf{R} , the set of all real numbers. Hence $\mathcal{M}(\mathcal{C})$ is nonempty.

COROLLARY 3.8. $\mathcal{M}(\mathcal{S}(a,q))$ is nonempty.

Proof. By Lemma 3.3, it is obvious that S(a,q) is closed. Thus the corollary follows from Theorem 3.7.

ACKNOWLEDGEMENT. The author wishes to thank Professor Kenneth B. Stolarsky for help and encouragement.

References

[1] N. Alon, J. H. Spencer, and P. Erdös, *The Probabilistic Method*, John Wiley & Sons, Inc., New York, 1992.

- [2] J. Bae, An extremal problem for subset-sum-distinct sequences with congruence conditions sequences, Discrete Mathematics (to appear).
- [3] _____, On subset-sum-distinct sequences, Analytic number theory Vol. 1, Progr Math. 138 (1996), Birkhäuser, Boston, 31-37.
- [4] _____, On subset-sum-distinct sequences of positive integers, Thesis (1995), University of Illinois, Urbana.
- [5] T. Bohman, A sum packing problem of Erdös and the Conway-Guy sequence, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3627-3636.
- [6] J. S. Benkoski and P. Erdös, On weird and pseudoperfect numbers, Mathematics of Computation 28 (1974), no. 126, 617-623.
- [7] J. H. Conway and R. K. Guy, Solution of a problem of P. Erdös, Colloquium Mathematicum 20 (1969), 307.
- [8] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
- [9] N. D. Elkies, An improved lower bound on the greatest element of a sum-distinct set of fixed order, Journal of Combinatorial Theory, Series A 41 (1986), 89-94.
- [10] P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des Nombres (1955), Bruxelles, 127-137.
- [11] P. Erdös and R. L. Graham, Old and new problems and results in combinatorial number theory, Monographies de L'Enseignement Mathématique 28 (1980), Université de Genève, L'Enseignement Mathématique, Geneva.
- [12] R. K. Guy, Unsolved Problems in Intuitive Mathematics, Vol.I, Number Theory, Springer-Verlag, New York, 1994.
- [13] _____, Sets of integers whose subsets have distinct sums, Annals of Discrete Mathematics 12 (1982), 141-154.
- [14] F. Hanson, J. M. Steele, and F. Stenger, Distinct sums over subsets, Proc. Amer. Math. Soc. 66 (1977), no. 1, 179-180.
- [15] W. F. Lunnon, Integer sets with distinct subset-sums, Mathematics of Computation 50 (1988), no. 181, 297-320.
- [16] J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992.

DEPARTMENT OF APPLIED MATHEMATICS, KOREA MARITIME UNIVERSITY, PUSAN 606-791, KOREA

E-mail: jgbae@hanara.kmaritime.ac.kr