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WEAK CONVERGENCE
FOR ITERATED RANDOM MAPS

OESOOK LEE

ABSTRACT. We consider a class of discrete parameter processes on a
locally compact Polish space S arising from successive compositions
of strictly stationary Markov random maps on § into itself. Sufficient
conditions for the existence of the stationary solution and the weak
convergence of the distributions of {I';[,_1---Fox} are given.

0. Introduction

Recently there has been considerable interest in various generaliza-
tions of autoregressive processes. Some classes of models are random
coefficient models, iterated random maps models, bilinear models, sto-
chastic difference equations, generalized autoregressive with conditional
heteroskedasticity, doubly stochastic models etc. (see, e.g. [3]-[5], [9]-
(15))

In this paper, we consider the iterated random maps models obtained
recursively by X, = [',(X,) , where {I';, : n > 0} is a sequence of
stationary Markov chains. When {I'; : n > 0} are independent and
identically distributed random maps , {X,} becomes a Markov process.
But stationary Markov sequence of maps does not give rise to a Markov
process in a locally compact Polish space S. Sufficient conditions en-
suring the existence of strictly stationary solution for independent and
identically distributed case are given in [4], [7], and [8]. It is shown by
Elton[5] that if {I',} is a stationary sequence of Lipschitz maps on S hav-
ing a.s. negative Lyapunov exponent function, I',I';_; - - - Tz converges
in distribution to a stationary process in S. We find sufficient conditions
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under which the stationary solution exists and the weak convergence of
the distribution of {X,} holds.

1. Main results

Let (S, p) be a complete, separable locally compact metric space with
metric p. Let C(S, S) be the continuous maps from S into itself, and let
Lip(S, S) be the Lipschitz maps from S into S. Endow C(S,.S) with the
compact-open topology.

Consider a probability space (2, F, P) on which are defined a sequence
of stationary Markov chain {I', : n > 0} taking values on C(S, S), and a
random variable Xj with values in S independent of the sequence {T',, :
n > 0}.

In this paper, we study the convergence of the process { X, } generated
by
(1.1) Xo, Xn = Fn_IFn_Q--'FQ(Xo), n 2 1.

Write X? for X, with Xy = z. Since {[', : n > 0} is a stationary
process in a complete separable metric space, there exists {f,, 1 —00 <
n < oo} such that {I', : n > 0} have the same distribution as {T', : n >
0}. For any z € S, —00 < k < 00, define

(12) Y,:n = Fk_IFk_Q e Fk_n(l‘), n Z 1.

By stationarity of {I',}, X7 has the same distribution as Y, for any
integer k and n > 1.
For f € Lip(S, S), define

P, W)
”f” B ::945 p(a:,y)

Lipschitz norm || - || becomes a Borel measurable function.

We make the following assumptions:

Suppose there exist 7o € S, my > 1 and A < 1 such that
(A1) T'py—y - - - T takes values on Lip(S, S),

(A2) Erollrlmo—l o FO” S )" Vw ’ and
(A3) for each z € S, sup;c,cm, Ep(20, X) < 0.
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LEMMA 1. Suppose there exist my > 1 and A < 1 such that (A1) and
(A2) hold. Then for each w,

Ero“anm—anmo—Q Tl € 2™

Proof. Note that for f,g € Lip(S,S), ||fgll < |Ifllligll- Using Markov
property and stationarity of {I',}, we have for each w,

El“o”ano—-l e FO“

E [E [ITamo-1 - Toll | Ta-t)mo» -+~ »To] | To)

< E[ITm-1mo-1 Lol E [ITamo=1**Cn=tymoll | Tn-1ymo] | To]
< A E[IT-1ymo-1--Toll | To]

Il

Repeat the same process as above, then we obtain

Ery|ITame—1 - Toll <A E [IIT(n~1)mg-1 -~ Tol| | To)
(1.3) <A E [[IT(a-2)mo-1- - - Toll | To]
<o < AR

Followings are our main theorems:

THEOREM 1. If there exist zo € S, mg > 1, and A < 1 such that
(A1) — (A3) hold, then

(1) for any = € S, Y, converges a.s. to Y, as n — oo and the
distribution of Y}, is independent of x.

(2) if we take Xo = Yy, then {Yx : k > 0} is a unique stationary
solution of the equation (1.1) and

(3) for any z € S, T, - - -T'y(z) converges in distribution to Yy as n —
00.

Proof. (1) First we let for each z € S, K(z) = sup,<,<m, Ep(z0, X7)
and K(z) < oo by (A3). For given n, find j > 0 such that jmy, <
n—1 < (j+1)my, then by properties of Lipschitzian norm and conditional
expectation, we have
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(1.4)
EP(Y]:SI’ ka,%ﬂ)

SE[[ITx-1- - Trmjmoll £ (Tk=jmo-1 -+ Tr=n(%0), Tk—jmo-1 - Tk-n-1(20))]
=EB[E [|Tk-1 " Tk—jmyl]

[0 (Ck=jmo=1* ** Tr=n(@0), Tk—jmo-1  * + Tk=n-1(20)) | Th=jmo»*+* » Tk=n—1]]
=E[p (Tk-jmo-1*** Tk=n(20), Tk=jmg-1 - Tk=n-1(20))

E{lICk=1 Thjmol | Ti—jmo]
<N E [p (20, Tk—jmo-1"* - Tk=n(T0)) + p (€0, Tk—jmo—1 - * - Tk=n—1(20))]
<N(2K (z))

The second last inequality follows from the stationarity of {T',} and

lemma 1.
Therefore for any integer k&,

[e o]
E Y oY, Y8,
n=1

x
= Y Ep(Y{3,Y5,,)
n=1

< i)\["‘L"l(QK(%))
n=1

2K1 (ioz\mo < 0,
where [%] denotes the largest integer which is not greater than - This
implies that 377 p(Y;7, Y%, )) < 0o as. and hence, as n — o0, Y7
converges a.s. to say, Y;.
On the other hand, by the same manner as above, we have

Ep(Yin Yen)
S )\[ﬁ?a]Ep (Fk—[ﬁ}mo—l o Fk._n(x), Fk_{;”ialm,o—l e Fk—ﬂ(zo))
< MNwl(K(zo) + K(2)).

Hence it can be proved that for any given z € S,

(e 9]
> pYi, Y

n=1

E < 00,
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which together with the convergence of Y7, implies that Y;*, converges
a.s. to Y; whose distribution is independent of z.

(2) Stationarity of {Y; : k > 0} follows from that of {I'x : k£ > 0}.
Also we have Y; = I['y_;---T'[4(Yp), £ > 1, and hence {Y : k > 0} is
the unique solution of (1.1).

(3) Since a.s. convergence implies the convergence in distribution,
result follows from the fact that X7 =T',_; - - - [o(z) have the same dis-
tribution as Y, = '\ ['_---T_(z). |

In next theorem, we consider the convergence of the empirical distri-
bution of a trajectory.

THEOREM 2. Foreveryz € S,

n—1

(2.5) S (T To(a)  B(F(¥) | T) as

k=0

for all bounded continuous real-valued functions on S, where T is the
o-field of invariant events for {I',}.

Proof. Let f be a real-valued continuous function on S with compact
support. Since {Y; : k > 0} is a sequence of stationary process and
E|f(Yy)| < oo, by Birkhoff’s ergodic theorem,

1 n—1

=3 f(Y) - YY) | D) as.
k=0

where Z is the o-field of invariant events for {I',}. But 1 3570 f(V3) =
LS f(Tko1---To(Ys)) and p(Ti—y -+ To(Yo), Tk-1---To(z)) — 0 ass.
as n — 0o, from which (1.5) holds by uniform continuity of f. For
bounded continuous real-valued function f, we obtain the result from
tightness of {I'y ---T'o(z)} and Urysohn’s lemma. O

REMARK. If I'; € Lip(S,S) and supycpcpm, ITn -~ Tol] < oo, then
(A3) holds.
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